

EPANEK 2014-2020 OPERATIONAL PROGRAMME COMPETITIVENESS' ENTREPRENEURSHIP INNOVATION

European Union European Regional Development Fund

HERAKLION 2019

7th International Conference on Sustainable Solid Waste Management

Biogas production from co-digestion of food waste with liquid pig manure and olive mill wastewater

N. E. Papastefanakis, A. E. Maragkaki, M. Fountoulakis, C.

The aim of the work

This study focuses on food waste and also on are presentative, seasonally produced agro-industrial waste with high organic content found in Greece and other Mediterranean countries: olive mill wastewater. Since OMW is seasonally available, it can be treated in existing facilities that already digest FW.

> EPANEK 2014-2020 OPERATIONAL PROGRAMME

RENEURSHIP INNOVATIO

Raw Materials

Food Waste

Liquid Pig Manure (LPM)

Olive Mill

Wastewater

(OMW)

European Union European Regional Development Fund EPANEK 2014-2020 OPERATIONAL PROGRAMME COMPETITIVENESS • ENTREPRENEURSHIP • INNOVATION

Raw Materials

Composition of Liquid Pig Manure (LPM), Food Waste (FW), Olive Mill Wastewater

Parameters	Liquid pig manure (LPM)	Food Waste (FW)	Olive Mill Wastewater (OMW)		
рН	7.4	4.2	4.2		
TS (g/L or g/kg)	16.96	255.22	87.88		
VS (g/L or g/kg)	11.32	240.50	76.94		
TCOD (g/L)	4	151.3	180.88		
d-COD (g/L)	2.2	- 0.70	68.6 0.35		
N (g/L)	0.27				
* * * * * * * * * * * * * * * * * * * * * * * * * * * European Union European Regional Development Fund EPANEK 2014-2020 OPERATIONAL PROGRAMME COMPETITIVENESS • ENTREPRENEURSHIP • INNOVATION					

Experimental procedure

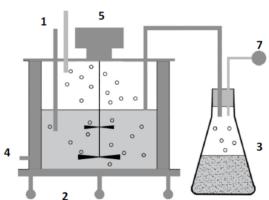
- 2 type of feedstock
 - ≻D1 : 75% LPM + 25% FW
 - D2: 75% LPM + 20% FW + 5% OMW
- Mesophilic AD, 37° C, HRT = 30 days
- Influent & effluent samples analyzed TS, VS, pH, TCOD, d-COD and methane content in

Digest er no	Digester working volume (L)	HRT (days)	Time (days)	Feedstock	OLR (kg VS m ⁻³ d ⁻¹)
1	3	30	1 -90	75% PW + 25% FW	2.5 ± 0.2
2	3	30	1 - 90	75% PW + 20% FW + 5% OMW	2.3 ± 0.2

EPANEK 2014-2020 OPERATIONAL PROGRAMME

TREPRENEURSHIP INNOVATION

Partnership Agreemen


2014 - 2020

European Regional

Development Fund

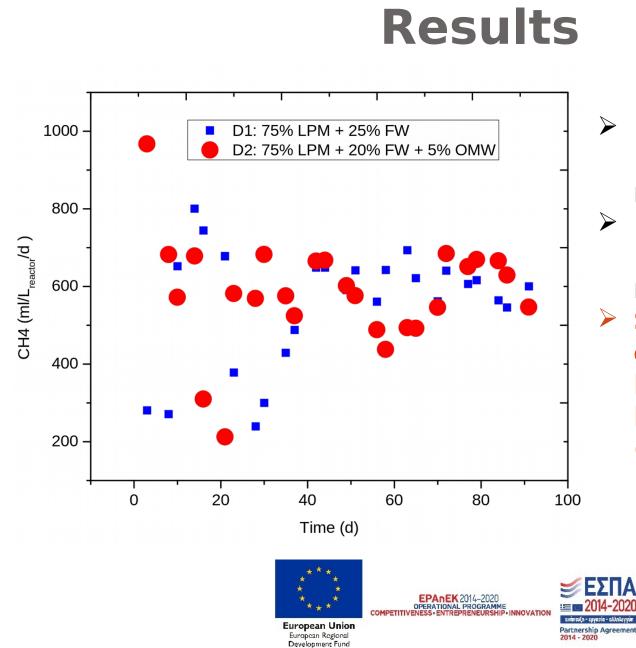
Lab scale digester

1 - influent pump for reactor, 2 biogas reactor, 3 - effluent bottle, 4
- heating, 5 - mixer, 6 - gas
sampling and 7 - gas collecting bag

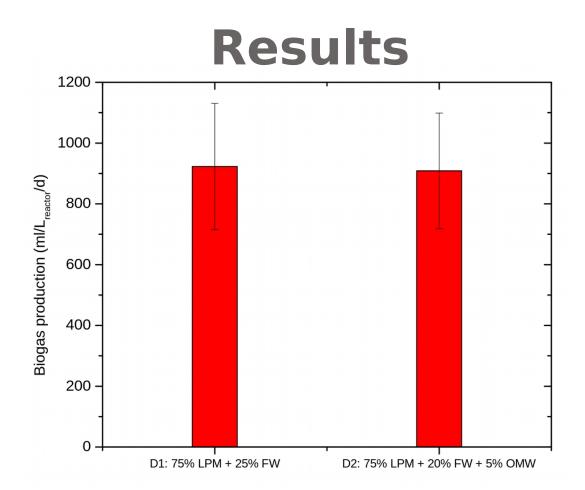
EPANEK 2014-2020 OPERATIONAL PROGRAMME

TREPRENEURSHIP INNOVATION

Feedstock


Characteristics of experimental materials as feedstock

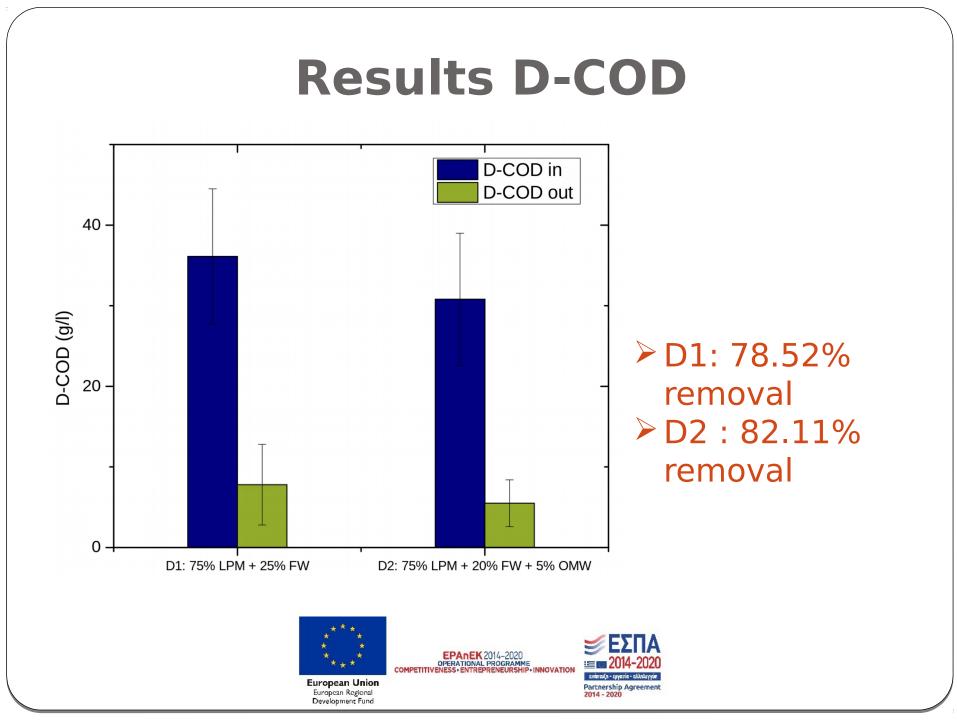
Parameters	D1: 75% PW + 25% FW	D2: 75% PW + 20% FW + 5% OMW
рН	6.7 ± 0.2	6.7 ± 0.1
TS (g/L or g/kg)	82.9 ± 6.5	78.6 ± 6.9
VS (g/L or g/kg)	73.5 ± 5.7	68.2 ± 5.2
TCOD (g/L)	108.5 ± 9.4	98.3 ± 17.1
d-COD (g/L)	36.1 ± 8.4	30.8 ± 8.2
N (g/L)	0.55 ± 0.05	0.47 ± 0.03

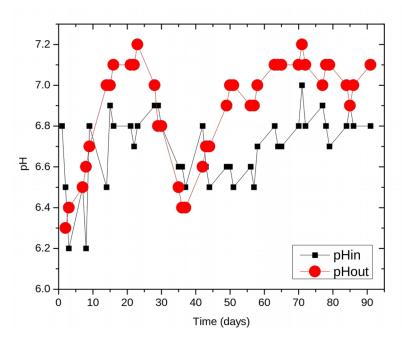

EPANEK 2014-2020 OPERATIONAL PROGRAMME COMPETITIVENESS- ENTREPRENEURSHIP- INNOVATION

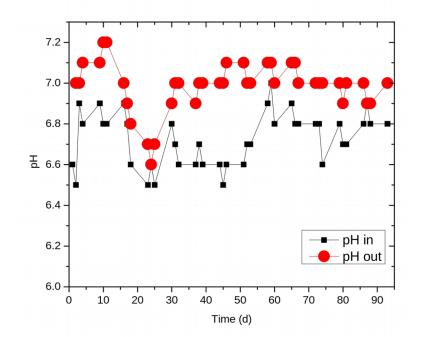
 D1: 555.4 ± 150.5 ml/Lreactor/d
 D2: 583.3 ± 139.6 ml/Lreactor/d
 Small increase of Methane Production for D2 feedstock (5%)

Analysis of variance for biogas production showed that there were significant differences among the combinations tested (p = 0.69)

> EPAnEK 2014-2020 OPERATIONAL PROGRAMME

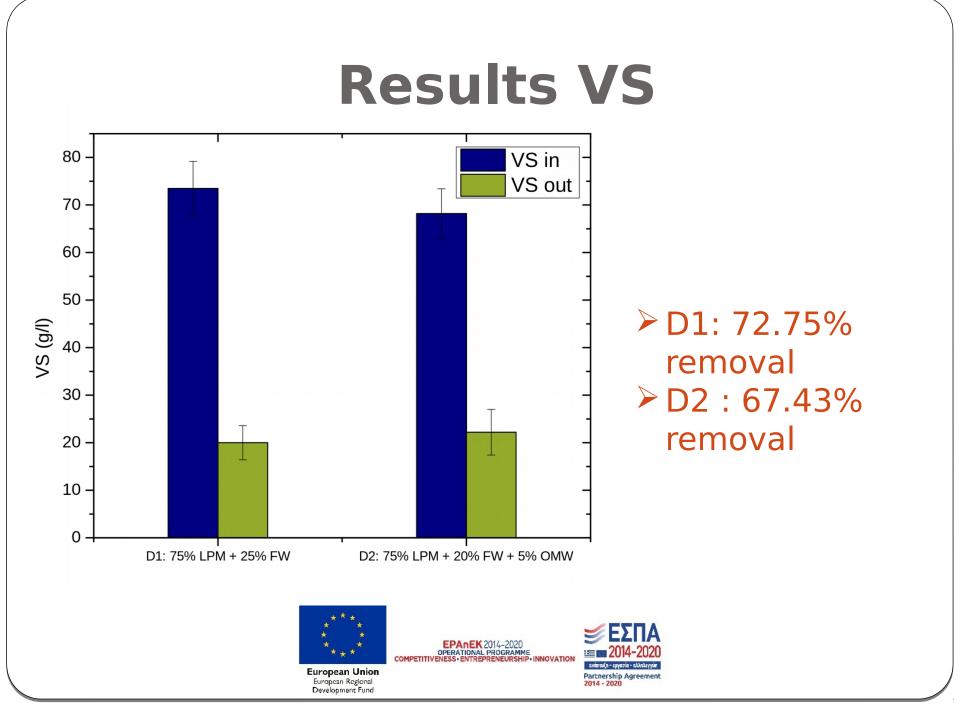

Development Fund


Results


Biogas and biomethane production, biogas composition for the two digesters

Parameters	D1: 75% PW +	D2: 75% PW + 20% FW +
Farameters	25% FW	5% OMW
Biogas		
production	922.98 ± 207.89	908.43 ± 190.46
(ml/L _{reactor} /d)		
Biogas		
composition	62.27 ± 0.08	65.30 ± 0.05
(%) CH ₄		
Biomethane		
production	555.45 ± 150.50	583.26 ± 139.59
(ml/L _{reactor} /d)		
		INNOVATION

Results - pH



D1: pHin = 6.7 ± 0.2 pHout = 6.9 ± 0.3

* * * * * * * * * * * * EPANEK 2014-2020 OPERATIONAL PROGRAMME COMPETITIVENESS ENTREPRENEURSHIP-INNOVATION

European Union European Regional Development Fund D2: pHin = 6.7 ± 0.1 pHout = 7.0 ± 0.1

Conclusions

- All co-digestion experiments are exhibited a successful operation up to the loading rates and mixing ratios that were examined.
- The differences in biogas production, composition COD and VS removal was very small which leads us to the conclusion that both feedstock have the same behavior in anaerobic digestion and we can replace the amount of FW with OMW without affecting the biogas production.

European Regional

Development Fund

EPAREK 2014-2020 OPERATIONAL PROGRAMME PETITIVENESS+ENTREPRENEURSHIP+INNOVA

Acknowledgments

This research has been co-funded by the European Union (European Regional Development Fund) and Greek national funds through the National Strategic Reference Framework (NSRF): Operational Programme Competitiveness Entrepreneurship Innovation 2014-2020 (EPAnEK) (T1E Δ K-02460, Solar Drying as a Tool for Organic Wastes Anaerobic Digestions' Economic and Environmental Upgrade).

EPANEK 2014-2020 OPERATIONAL PROGRAMME

Thank you

