

# REMOVAL OF ARSENIC ON SORBENTS CONTAINING IRON OXIDE AND TITANIUM OXIDE MODIFIED WITH LANTHANIDE IONS

Sebastian Dudek\*, Dorota Kołodyńska

Maria Curie-Skłodowska University Faculty of Chemistry Department of Inorganic Chemistry M. Curie Sklodowska Sq. 2, 20-031 Lublin, Poland

sebastian.dudek@poczta.umcs.lublin.pl

### The risk of arsenic compounds

### Estimated Risk of Arsenic in Drinking Water



Fig. 1. Estimated risk of arsenic in drinking water.

The recommended limit of arsenic concentration in drinkining water (according to the WHO guidelines):

### 0.01 mg/L



### **Fig. 2.** Effects of arsenic poisoning.

Sources of arsenic in the environment:

- ✤ natural weathering processes,
- volcanic emissions,
- geochemical reactions,
- anthropogenic factors:
- coal combustion,
- mining,
- $\succ$  use of insecticides, herbicides and phosphate fertilizers.

# **Arsenic chemistry**

Arsenic exists mainly in the following oxidation states: -III +III +VH<sub>3</sub>AsO<sub>3</sub> arsenous acid H<sub>3</sub>AsO<sub>4</sub> arsenic acid CH<sub>3</sub>AsO<sub>3</sub>H<sub>2</sub> monomethylarsonic acid (CH<sub>3</sub>)<sub>2</sub>AsO<sub>2</sub>H dimethylarsinic acid aka cacodylic acid trimethylarsine oxide  $(CH_3)_3AsO$  $(CH_3)_4As^+$ tetramethylarsonium  $(CH_3)_3As^+CH_2CO_2^$ arsenobetaine  $(CH_3)_3As^+CH_2CH_2OH$  arsenocholine Fig. 3. Arsenic compounds commonly encountered in environmental materials. Municipal water DH 6 to 9

- Trivalent arsenic is found primarily as H<sub>3</sub>AsO<sub>3</sub> which is not ionized
- Pentavalent arsenic is found primarily as H<sub>2</sub>AsO<sub>4</sub><sup>-</sup> and HAsO<sub>4</sub><sup>2-</sup>

Toxicity of arsenic compunds:

- inorganic compounds are more toxic than organic ones
- As(III) compounds are more toxic than As(V) ones





### Arsenic removal methods



Fig. 5. Examples of arsenic removal methods.

Adsorbents used to remove arsenic should combine the following features:

- high performance,
- low cost
- high durability,
- stable and efficient in changing environmental conditions,
- ability to regenerate.



**Fig. 6.** Schematic illustration of TiO<sub>2</sub> application in arsenic removal.





**Fig. 7.**  $pH_{pzc}$  measured by the drift method.



5

### Sorbent Ferrix A33E







Fig. 9. Ferrix A33E grains





Fig. 11 SEM images of As500.

### Main targets

Effectiveness of arsenic sorption on the pure As500 and Ferrix A33E sorbents and with the previously adsorbed lanthanide(III) ions was investigated. The research included:

- determination of adsorption parameters of arsenic ions
- determination of adsorption parameters of lanthanum, neodymium and cerium ions
- comparison of adsorptive properties of the pure As500 and Ferrix A33E sorbents and modified with lanthanide ions towards As(V)



Fig. 13. The scheme of the part of experiment.

### Main stages of the study

- effect of pH on the sorption efficiency of As(V) and La(III) ions
- sorption kinetics
- adsorption isotherms
- sorbent selectivity towards lanthanides
- > As(V) adsorption on the sorbent with previously adsorbed lanthanide ions

### Determination of As(V) and La(III) concentrations

### <u>As(V)</u>



Fig. 10. UV-VIS Spectrophotometer (Cary 60, Agilent Technologies). Concentrations of arsenic(V) ions in the solutions were determined by UV-VIS

Technologies).

Fig. 12. The solutions of arsenic complex compunds prepared to determine the standard curve.



La(III)



Fig. 11. Inductively Coupled Plasma-**Optical Emission Spectrometer ICP-**OES (720-Es, Varian).

Concentrations of lanthanide(III) ions in the solutions were determined by Coupled Inductively Plasma **Optical Emission Spectrometry** (ICP-OES, 720-ES, Varian)

### The amount of adsorbed metal (qt) was estimated from the following relation:

where  $q_t$  is the amount of adsorbed metal (mg/g),  $c_0$  is the initial concentration of metal in the solution (mg/L),  $c_t$  is the concentration of metal in the solution (mg/L),  $c_t$  is the concentration of metal in the solution after time t (mg/L), V is the volume of the solution containing metal ions the concentration of sorbent (g).

The percentage of adsorption (%S) is that of metal adsorbed on the adsorbent beads calculated by the following equatiom:

 $\% S = (c_0 - c_t) / c_0 \times 100\%$ 

Kinetic parameters of metal ions sorption onto the sorbent were determined using the following equations:

$$log(q_e - q_t) = log(q_e) - \frac{\kappa_1}{2,303} \times t$$

where *qe* is the mass of adsorbed metal ions at equilibrium (mg/g), *qt* is the mass of adsorbed metal ions at time t (mg/g),  $k_1$  and  $k_2$  are the reaction rate constants of the because  $dg^2$  first drawn of the first draw where qe is the mass of adsorbed metal ions at equilibrium (mg/g), qt is the mass of adsorbed metal ions at time t (mg/g),  $k_1$  and  $k_2$  are the reaction rate constants of the pseudo-first order (1/min) and pseudo-second order (g/mg min)

> were determined from the equations: Langmuir model **Freundlich model**

where:

 $q_{o}$  - the maximum adsorption capacity (mg/g)

 $K_{I}$  - the Langmuir coefficient (dm<sup>3</sup>/mg)

 $K_{F}$  roughly an indicator of the adsorption capacity (mg/g)

n-empirical parameter; the heterogeneity factor

### Effect of pH on As(V) removal efficiency



**Fig. 14.** Effect of pH on As(V) ions removal efficiency (As500,  $c = 10 \text{ mg/dm}^3$ , m = 0,1 g, t = 24 h).

**Fig. 15.** Effect of pH on As(V) ions removal efficiency (Ferrix A33E,  $c = 10 \text{ mg/dm}^3$ , m = 0,1 g, t = 24 h).

The maximum sorption capacity towards As(V) ions was achieved at **pH 6**.

# Effect of pH on adsorption efficiency of La(III) ions as model ions for other lanthanides



The maximum sorption capacity towards La(III) ions was achieved at pH 4.

12

# Effect of contact time and initial concentration of As(V) on the 13 adsorption efficiency



| Fig. 18. Graph of the sorption capacities o | f the adsorbent as a function of          |
|---------------------------------------------|-------------------------------------------|
| time at As(V) initial concentrations equa   | al to 25, 50 and 100 mg/dm <sup>3</sup> . |

| Vinatia                   | As(V)-As500           |                       |                       |  |  |  |
|---------------------------|-----------------------|-----------------------|-----------------------|--|--|--|
| Killetic                  | 25                    | 50                    | 100                   |  |  |  |
| parameters                | [mg/dm <sup>3</sup> ] | [mg/dm <sup>3</sup> ] | [mg/dm <sup>3</sup> ] |  |  |  |
|                           | Pseudo-first of       | rder model            |                       |  |  |  |
| q1 [mg/g]                 | 4.74                  | 7.83                  | 15.56                 |  |  |  |
| q <sub>1.cal</sub> [mg/g] | 2.61                  | 4.25                  | 10.69                 |  |  |  |
| k1 [1/min]                | 0.046                 | 0.037                 | 0.034<br>0.8202       |  |  |  |
| R <sup>2</sup>            | 0.8172                | 0.5433                |                       |  |  |  |
|                           | Pseudo-secon          | id order model        |                       |  |  |  |
| $q_2 [mg/g]$              | 4.74                  | 7.83                  | 15.56                 |  |  |  |
| q <sub>2.cal</sub> [mg/g] | 3.15                  | 5.28                  | 10.53                 |  |  |  |
| k <sub>2</sub> [g/g·min]  | 0.021                 | 0.010                 | 0.005                 |  |  |  |
| h [mg/min]                | 0.211                 | 0.293                 | 0.506                 |  |  |  |
| R <sup>2</sup>            | 0.9724                | 0.9989                | 0.9973                |  |  |  |

**Fig. 19.** Determined kinetic parameters of the As(V) adsorption process on the tested sorbent.

# Effect of contact time and initial concentration of As(V) on the adsorption efficiency



**Fig. 20.** Graph of the sorption capacities of the adsorbent as a function of time at As(V) initial concentrations equal to 25, 50 and 100 mg/dm<sup>3</sup>.

| Kinetic                   | As(V)-Ferrix A33E     |                       |          |  |  |  |
|---------------------------|-----------------------|-----------------------|----------|--|--|--|
| norometers                | 25                    | 50                    | 100      |  |  |  |
| parameters                | [mg/dm <sup>3</sup> ] | [mg/dm <sup>3</sup> ] | [mg/dm³] |  |  |  |
|                           | Pseudo-first or       | rder model            |          |  |  |  |
| q1 [mg/g]                 | 4.84                  | 8.78                  | 17.16    |  |  |  |
| q <sub>1.cal</sub> [mg/g] | 0.65                  | 1.05                  | 4.30     |  |  |  |
| k1 [1/min]                | 0.018                 | 0.019                 | 0.027    |  |  |  |
| $\mathbb{R}^2$            | 0.5226                | 0.5502                | 0.8162   |  |  |  |
|                           | Pseudo-secon          | d order model         |          |  |  |  |
| q <sub>2</sub> [mg/g]     | 4.84                  | 8.78                  | 17.16    |  |  |  |
| q <sub>2.cal</sub> [mg/g] | 4.87                  | 8.82                  | 17.30    |  |  |  |
| k₂ [g/g·min]              | 0.105                 | 0.073                 | 0.023    |  |  |  |
| h [mg/min]                | 2.482                 | 5.648                 | 6.990    |  |  |  |
| R <sup>2</sup>            | 0.9999                | 0.9999                | 1.0000   |  |  |  |

**Fig. 21.** Determined kinetic parameters of the As(V) adsorption process on the tested sorbent.

# Effect of contact time and initial concentration of lanthanides(III) 15 on the adsorption efficiency







### Effect of contact time and initial concentration of lanthanides(III) 16

### on the adsorption efficiency

| Vinatia                                                                                                                                                                  |                                                                                                                                     | La(III)-As50                                                                                                                                       | )                                                                                                    | Vinatia                                                                                                                                                                                              |                                                                                                                                               | Ce(III)-As500                                                                                                                                           | )                                                                                                                     | Kinetic Ce(III)-Ferrix A33E                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                               | 33E                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Killetic                                                                                                                                                                 | 10                                                                                                                                  | 50                                                                                                                                                 | 100                                                                                                  | Killetic                                                                                                                                                                                             | 50                                                                                                                                            | 75                                                                                                                                                      | 100                                                                                                                   | narameters                                                                                                                                                   | 50                                                                                                                                   | 75                                                                                                                                                                            | 100                                                                                                                             |
| parameters                                                                                                                                                               | [mg/dm <sup>3</sup> ]                                                                                                               | [mg/dm <sup>3</sup> ]                                                                                                                              | [mg/dm <sup>3</sup> ]                                                                                | parameters                                                                                                                                                                                           | [mg/dm <sup>3</sup> ]                                                                                                                         | [mg/dm <sup>3</sup> ]                                                                                                                                   | [mg/dm <sup>3</sup> ]                                                                                                 | parameters                                                                                                                                                   | [mg/dm <sup>3</sup> ]                                                                                                                | [mg/dm³]                                                                                                                                                                      | [mg/dm³]                                                                                                                        |
|                                                                                                                                                                          | Pseudo-first or                                                                                                                     | der model                                                                                                                                          |                                                                                                      |                                                                                                                                                                                                      | Pseudo-first or                                                                                                                               | rder model                                                                                                                                              |                                                                                                                       |                                                                                                                                                              | Pseudo-first or                                                                                                                      | der model                                                                                                                                                                     |                                                                                                                                 |
| q1 [mg/g]                                                                                                                                                                | 2.00                                                                                                                                | 9.57                                                                                                                                               | 17.51                                                                                                | q1 [mg/g]                                                                                                                                                                                            | 9.80                                                                                                                                          | 11.89                                                                                                                                                   | 15.00                                                                                                                 | q1 [mg/g]                                                                                                                                                    | 9.96                                                                                                                                 | 14.98                                                                                                                                                                         | 19.74                                                                                                                           |
| q <sub>1.cal</sub> [mg/g]                                                                                                                                                | 0.11                                                                                                                                | 2.26                                                                                                                                               | 8.10                                                                                                 | q <sub>1.cal</sub> [mg/g]                                                                                                                                                                            | 3.16                                                                                                                                          | 4.64                                                                                                                                                    | 5.50                                                                                                                  | $q_{1.cal} [mg/g]$                                                                                                                                           | 0.65                                                                                                                                 | 4.11                                                                                                                                                                          | 7.30                                                                                                                            |
| k <sub>1</sub> [1/min]                                                                                                                                                   | 0.025                                                                                                                               | 0.012                                                                                                                                              | 0.013                                                                                                | k <sub>1</sub> [1/min]                                                                                                                                                                               | 0.025                                                                                                                                         | 0.025                                                                                                                                                   | 0.020                                                                                                                 | k1 [1/min]                                                                                                                                                   | 0.037                                                                                                                                | 0.033                                                                                                                                                                         | 0.029                                                                                                                           |
| $\mathbb{R}^2$                                                                                                                                                           | 0.6012                                                                                                                              | 0.6378                                                                                                                                             | 0.8630                                                                                               | R <sup>2</sup>                                                                                                                                                                                       | 0.9310                                                                                                                                        | 0.9439                                                                                                                                                  | 0.9807                                                                                                                | $\mathbb{R}^2$                                                                                                                                               | 0.8817                                                                                                                               | 0.7496                                                                                                                                                                        | 0.9322                                                                                                                          |
|                                                                                                                                                                          | Pseudo-secon                                                                                                                        | d order model                                                                                                                                      |                                                                                                      |                                                                                                                                                                                                      | Pseudo-secon                                                                                                                                  | d order model                                                                                                                                           |                                                                                                                       |                                                                                                                                                              | Pseudo-secon                                                                                                                         | d order model                                                                                                                                                                 |                                                                                                                                 |
| q <sub>2</sub> [mg/g]                                                                                                                                                    | 2.00                                                                                                                                | 9.57                                                                                                                                               | 17.51                                                                                                | q <sub>2</sub> [mg/g]                                                                                                                                                                                | 9.80                                                                                                                                          | 11.89                                                                                                                                                   | 15.00                                                                                                                 | q <sub>2</sub> [mg/g]                                                                                                                                        | 9.96                                                                                                                                 | 14.98                                                                                                                                                                         | 19.74                                                                                                                           |
| q <sub>2.cal</sub> [mg/g]                                                                                                                                                | 2.00                                                                                                                                | 9.57                                                                                                                                               | 17.74                                                                                                | $q_{2.cal} [mg/g]$                                                                                                                                                                                   | 9.86                                                                                                                                          | 12.05                                                                                                                                                   | 15.15                                                                                                                 | q <sub>2.cal</sub> [mg/g]                                                                                                                                    | 9.98                                                                                                                                 | 15.17                                                                                                                                                                         | 19.88                                                                                                                           |
| $k_2 [g/g min]$                                                                                                                                                          | 0.983                                                                                                                               | 0.039                                                                                                                                              | 0.007                                                                                                | $k_2 [g/g min]$                                                                                                                                                                                      | 0.037                                                                                                                                         | 0.020                                                                                                                                                   | 0.017                                                                                                                 | k <sub>2</sub> [g/g·min]                                                                                                                                     | 0.236                                                                                                                                | 0.019                                                                                                                                                                         | 0.017                                                                                                                           |
| h [mg/min]                                                                                                                                                               | 3 930                                                                                                                               | 3.533                                                                                                                                              | 2.068                                                                                                | h [mg/min]                                                                                                                                                                                           | 3.567                                                                                                                                         | 2.868                                                                                                                                                   | 3.819                                                                                                                 | h [mg/min]                                                                                                                                                   | 23.508                                                                                                                               | 4.328                                                                                                                                                                         | 6.681                                                                                                                           |
| $R^2$                                                                                                                                                                    | 0.9999                                                                                                                              | 0.9998                                                                                                                                             | 0.9973                                                                                               | R <sup>2</sup>                                                                                                                                                                                       | 0.9998                                                                                                                                        | 0.9997                                                                                                                                                  | 0.9998                                                                                                                | $\mathbf{R}^2$                                                                                                                                               | 1.0000                                                                                                                               | 0.9996                                                                                                                                                                        | 0.9999                                                                                                                          |
|                                                                                                                                                                          |                                                                                                                                     |                                                                                                                                                    |                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                               |                                                                                                                                                         |                                                                                                                       |                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                               |                                                                                                                                 |
| Vinatia                                                                                                                                                                  |                                                                                                                                     | Nd(III)-As50                                                                                                                                       | )                                                                                                    | Vinatia                                                                                                                                                                                              |                                                                                                                                               | La(III)-Ferrix A                                                                                                                                        | 33E                                                                                                                   | Vinatia                                                                                                                                                      |                                                                                                                                      | Nd(III)-Ferrix A                                                                                                                                                              | 33E                                                                                                                             |
| Kinetic                                                                                                                                                                  | 50                                                                                                                                  | Nd(III)-As500<br>75                                                                                                                                | ) 100                                                                                                | Kinetic                                                                                                                                                                                              | 10                                                                                                                                            | La(III)-Ferrix A<br>50                                                                                                                                  | 33E<br>100                                                                                                            | Kinetic                                                                                                                                                      | 50                                                                                                                                   | Nd(III)-Ferrix A<br>75                                                                                                                                                        | 33E<br>100                                                                                                                      |
| Kinetic<br>parameters                                                                                                                                                    | 50<br>[mg/dm <sup>3</sup> ]                                                                                                         | Nd(III)-As500<br>75<br>[mg/dm <sup>3</sup> ]                                                                                                       | )<br>100<br>[mg/dm <sup>3</sup> ]                                                                    | Kinetic<br>parameters                                                                                                                                                                                | 10<br>[mg/dm <sup>3</sup> ]                                                                                                                   | La(III)-Ferrix A<br>50<br>[mg/dm <sup>3</sup> ]                                                                                                         | 33E<br>100<br>[mg/dm <sup>3</sup> ]                                                                                   | Kinetic<br>parameters                                                                                                                                        | 50<br>[mg/dm <sup>3</sup> ]                                                                                                          | Nd(III)-Ferrix A<br>75<br>[mg/dm <sup>3</sup> ]                                                                                                                               | 33E<br>100<br>[mg/dm <sup>3</sup> ]                                                                                             |
| Kinetic<br>parameters                                                                                                                                                    | 50<br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or                                                                                      | Nd(III)-As500<br>75<br>[mg/dm <sup>3</sup> ]<br>der model                                                                                          | )<br>100<br>[mg/dm <sup>3</sup> ]                                                                    | Kinetic<br>parameters                                                                                                                                                                                | 10<br>[mg/dm³]<br>Pseudo-first or                                                                                                             | La(III)-Ferrix A<br>50<br>[mg/dm <sup>3</sup> ]<br>'der model                                                                                           | 33E<br>100<br>[mg/dm <sup>3</sup> ]                                                                                   | Kinetic<br>parameters                                                                                                                                        | 50<br>[mg/dm³]<br>Pseudo-first or                                                                                                    | Nd(III)-Ferrix A<br>75<br>[mg/dm <sup>3</sup> ]<br>'der model                                                                                                                 | 33E<br>100<br>[mg/dm <sup>3</sup> ]                                                                                             |
| Kinetic<br>parameters<br>q <sub>1</sub> [mg/g]                                                                                                                           | <b>50</b><br>[ <b>mg/dm<sup>3</sup></b> ]<br>Pseudo-first or<br>9.73                                                                | Nd(III)-As500<br>75<br>[mg/dm <sup>3</sup> ]<br>der model<br>11.84                                                                                 | <b>100</b><br>[mg/dm <sup>3</sup> ]<br>14.53                                                         | Kinetic<br>parameters<br>q1 [mg/g]                                                                                                                                                                   | 10<br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>2.00                                                                                        | La(III)-Ferrix A<br>50<br>[mg/dm <sup>3</sup> ]<br>:der model<br>10.00                                                                                  | <b>33E</b><br><b>100</b><br>[mg/dm <sup>3</sup> ]<br>20.00                                                            | Kinetic<br>parameters<br>q1 [mg/g]                                                                                                                           | <b>50</b><br>[ <b>mg/dm<sup>3</sup></b> ]<br>Pseudo-first or<br>9.99                                                                 | Nd(III)-Ferrix A<br>75<br>[mg/dm <sup>3</sup> ]<br>rder model<br>14.89                                                                                                        | <b>33E</b><br><b>100</b><br>[mg/dm <sup>3</sup> ]<br>19.67                                                                      |
| Kinetic<br>parameters<br>q <sub>1</sub> [mg/g]<br>q <sub>1.cal</sub> [mg/g]                                                                                              | <b>50</b><br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>9.73<br>3.00                                                               | Nd(III)-As500<br>75<br>[mg/dm <sup>3</sup> ]<br>rder model<br>11.84<br>4.83                                                                        | <b>100</b><br>[mg/dm <sup>3</sup> ]<br>14.53<br>5.83                                                 | Kinetic<br>parameters<br>q1 [mg/g]<br>q1.cal [mg/g]                                                                                                                                                  | <b>10</b><br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>2.00<br>0.03                                                                         | La(III)-Ferrix A<br>50<br>[mg/dm <sup>3</sup> ]<br>:der model<br>10.00<br>0.14                                                                          | <b>33E</b><br><b>100</b><br><b>[mg/dm<sup>3</sup>]</b><br>20.00<br>5.09                                               | Kinetic<br>parameters<br>q1 [mg/g]<br>q1.cal [mg/g]                                                                                                          | <b>50</b><br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>9.99<br>1.80                                                                | Nd(III)-Ferrix A       75       [mg/dm³]       'der model       14.89       10.32                                                                                             | <b>33E</b><br><b>100</b><br><b>[mg/dm<sup>3</sup>]</b><br>19.67<br>15.93                                                        |
| Kinetic<br>parameters<br>q <sub>1</sub> [mg/g]<br>q <sub>1.cal</sub> [mg/g]<br>k <sub>1</sub> [1/min]                                                                    | <b>50</b><br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>9.73<br>3.00<br>0.018                                                      | Nd(III)-As500<br>75<br>[mg/dm <sup>3</sup> ]<br>der model<br>11.84<br>4.83<br>0.018                                                                | 100<br>[mg/dm <sup>3</sup> ]<br>14.53<br>5.83<br>0.023                                               | Kinetic<br>parameters<br>q <sub>1</sub> [mg/g]<br>q <sub>1.cal</sub> [mg/g]<br>k <sub>1</sub> [1/min]                                                                                                | 10<br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>2.00<br>0.03<br>0.016                                                                       | La(III)-Ferrix A<br>50<br>[mg/dm <sup>3</sup> ]<br>:der model<br>10.00<br>0.14<br>0.016                                                                 | <b>33E</b><br><b>100</b><br>[mg/dm <sup>3</sup> ]<br>20.00<br>5.09<br>0.028                                           | Kinetic<br>parameters<br>q <sub>1</sub> [mg/g]<br>q <sub>1.cal</sub> [mg/g]<br>k <sub>1</sub> [1/min]                                                        | <b>50</b><br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>9.99<br>1.80<br>0.026                                                       | Nd(III)-Ferrix A<br>75<br>[mg/dm <sup>3</sup> ]<br>"der model<br>14.89<br>10.32<br>0.023                                                                                      | <b>33E</b><br><b>100</b><br><b>[mg/dm<sup>3</sup>]</b><br>19.67<br>15.93<br>0.029                                               |
| Kinetic<br>parameters<br>q1 [mg/g]<br>q1.cal [mg/g]<br>k1 [1/min]<br>R <sup>2</sup>                                                                                      | <b>50</b><br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>9.73<br>3.00<br>0.018<br>0.8852                                            | Nd(III)-As500<br>75<br>[mg/dm <sup>3</sup> ]<br>rder model<br>11.84<br>4.83<br>0.018<br>0.9360                                                     | 100<br>[mg/dm <sup>3</sup> ]<br>14.53<br>5.83<br>0.023<br>0.9428                                     | Kinetic<br>parameters<br>q1 [mg/g]<br>q1.cal [mg/g]<br>k1 [1/min]<br>R <sup>2</sup>                                                                                                                  | 10<br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>2.00<br>0.03<br>0.016<br>0.3757                                                             | La(III)-Ferrix A<br>50<br>[mg/dm <sup>3</sup> ]<br>rder model<br>10.00<br>0.14<br>0.016<br>0.3757                                                       | <b>33E</b><br><b>100</b><br><b>[mg/dm<sup>3</sup>]</b><br>20.00<br>5.09<br>0.028<br>0.9344                            | Kinetic<br>parameters<br>q1 [mg/g]<br>q1.cal [mg/g]<br>k1 [1/min]<br>R <sup>2</sup>                                                                          | <b>50</b><br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>9.99<br>1.80<br>0.026<br>0.8482                                             | Nd(III)-Ferrix A       75       [mg/dm³]       ''der model       14.89       10.32       0.023       0.9533                                                                   | <b>33E</b><br><b>100</b><br><b>[mg/dm<sup>3</sup>]</b><br>19.67<br>15.93<br>0.029<br>0.9175                                     |
| Kinetic<br>parameters<br>q <sub>1</sub> [mg/g]<br>q <sub>1.cal</sub> [mg/g]<br>k <sub>1</sub> [1/min]<br>R <sup>2</sup>                                                  | 50<br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>9.73<br>3.00<br>0.018<br>0.8852<br>Pseudo-secon                                   | Nd(III)-As500<br>75<br>[mg/dm <sup>3</sup> ]<br>der model<br>11.84<br>4.83<br>0.018<br>0.9360<br>d order model                                     | 100<br>[mg/dm <sup>3</sup> ]<br>14.53<br>5.83<br>0.023<br>0.9428                                     | Kinetic<br>parameters<br>q <sub>1</sub> [mg/g]<br>q <sub>1.cal</sub> [mg/g]<br>k <sub>1</sub> [1/min]<br>R <sup>2</sup>                                                                              | 10       [mg/dm³]       Pseudo-first or       2.00       0.03       0.016       0.3757       Pseudo-secon                                     | La(III)-Ferrix A<br>50<br>[mg/dm <sup>3</sup> ]<br>:der model<br>10.00<br>0.14<br>0.016<br>0.3757<br>d order model                                      | <b>33E</b><br><b>100</b><br><b>[mg/dm<sup>3</sup>]</b><br>20.00<br>5.09<br>0.028<br>0.9344                            | Kinetic<br>parameters<br>q1 [mg/g]<br>q1.cal [mg/g]<br>k1 [1/min]<br>R <sup>2</sup>                                                                          | 50<br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>9.99<br>1.80<br>0.026<br>0.8482<br>Pseudo-secon                                    | Nd(III)-Ferrix A<br>75<br>[mg/dm <sup>3</sup> ]<br>"der model<br>14.89<br>10.32<br>0.023<br>0.9533<br>d order model                                                           | <b>33E</b><br><b>100</b><br><b>[mg/dm<sup>3</sup>]</b><br>19.67<br>15.93<br>0.029<br>0.9175                                     |
| Kinetic<br>parameters       q1 [mg/g]       q1.cal [mg/g]       k1 [1/min]       R <sup>2</sup> q2 [mg/g]                                                                | 50<br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>9.73<br>3.00<br>0.018<br>0.8852<br>Pseudo-secon<br>9.73                           | Nd(III)-As500<br>75<br>[mg/dm <sup>3</sup> ]<br>rder model<br>11.84<br>4.83<br>0.018<br>0.9360<br>d order model<br>11.84                           | 100<br>[mg/dm <sup>3</sup> ]<br>14.53<br>5.83<br>0.023<br>0.9428<br>14.53                            | Kinetic<br>parameters<br>$q_1 [mg/g]$<br>$q_{1.cal} [mg/g]$<br>$k_1 [1/min]$<br>$R^2$<br>$q_2 [mg/g]$                                                                                                | 10       [mg/dm³]       Pseudo-first or       2.00       0.03       0.016       0.3757       Pseudo-secon       2.00                          | La(III)-Ferrix A<br>50<br>[mg/dm <sup>3</sup> ]<br>rder model<br>10.00<br>0.14<br>0.016<br>0.3757<br>d order model<br>10.00                             | <b>33E</b><br><b>100</b><br><b>[mg/dm<sup>3</sup>]</b><br>20.00<br>5.09<br>0.028<br>0.9344<br>20.00                   | Kinetic<br>parameters<br>q1 [mg/g]<br>q1.cal [mg/g]<br>k1 [1/min]<br>R <sup>2</sup><br>q2 [mg/g]                                                             | 50<br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>9.99<br>1.80<br>0.026<br>0.8482<br>Pseudo-secon<br>9.99                            | Nd(III)-Ferrix A       75       [mg/dm³]       ''der model       14.89       10.32       0.023       0.9533       d order model       14.89                                   | <b>33E</b><br><b>100</b><br><b>[mg/dm<sup>3</sup>]</b><br>19.67<br>15.93<br>0.029<br>0.9175<br>19.67                            |
| Kinetic<br>parameters       q1 [mg/g]       q1.cal [mg/g]       k1 [1/min]       R2       q2 [mg/g]       q2.cal [mg/g]                                                  | 50<br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>9.73<br>3.00<br>0.018<br>0.8852<br>Pseudo-secon<br>9.73<br>9.80                   | Nd(III)-As500<br>75<br>[mg/dm <sup>3</sup> ]<br>der model<br>11.84<br>4.83<br>0.018<br>0.9360<br>d order model<br>11.84<br>11.94                   | 100<br>[mg/dm <sup>3</sup> ]<br>14.53<br>5.83<br>0.023<br>0.9428<br>14.53<br>14.65                   | Kinetic<br>parameters<br>q1 [mg/g]<br>q1.cal [mg/g]<br>k1 [1/min]<br>R <sup>2</sup><br>q2 [mg/g]<br>q2.cal [mg/g]                                                                                    | 10       [mg/dm³]       Pseudo-first or       2.00       0.03       0.016       0.3757       Pseudo-secon       2.00       2.00               | La(III)-Ferrix A<br>50<br>[mg/dm <sup>3</sup> ]<br>:der model<br>10.00<br>0.14<br>0.016<br>0.3757<br>d order model<br>10.00<br>10.00                    | <b>33E</b><br><b>100</b><br><b>[mg/dm<sup>3</sup>]</b><br>20.00<br>5.09<br>0.028<br>0.9344<br>20.00<br>20.12          | Kinetic<br>parameters<br>q1 [mg/g]<br>q1.cal [mg/g]<br>k1 [1/min]<br>R <sup>2</sup><br>q2 [mg/g]<br>q2.cal [mg/g]                                            | 50<br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>9.99<br>1.80<br>0.026<br>0.8482<br>Pseudo-secon<br>9.99<br>10.04                   | Nd(III)-Ferrix A<br>75<br>[mg/dm <sup>3</sup> ]<br>"der model<br>14.89<br>10.32<br>0.023<br>0.9533<br>d order model<br>14.89<br>15.27                                         | <b>33E</b><br><b>100</b><br><b>[mg/dm<sup>3</sup>]</b><br>19.67<br>15.93<br>0.029<br>0.9175<br>19.67<br>20.18                   |
| Kinetic<br>parameters $q_1 [mg/g]$<br>$q_{1.cal} [mg/g]$<br>$k_1 [1/min]$<br>$R^2$ $q_2 [mg/g]$<br>$q_{2.cal} [mg/g]$<br>$k_2 [g/g·min]$                                 | 50<br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>9.73<br>3.00<br>0.018<br>0.8852<br>Pseudo-secon<br>9.73<br>9.80<br>0.030          | Nd(III)-As500<br>75<br>[mg/dm <sup>3</sup> ]<br>der model<br>11.84<br>4.83<br>0.018<br>0.9360<br>d order model<br>11.84<br>11.94<br>0.016          | 100<br>[mg/dm <sup>3</sup> ]<br>14.53<br>5.83<br>0.023<br>0.9428<br>14.53<br>14.65<br>0.017          | Kinetic<br>parameters<br>$q_1 [mg/g]$<br>$q_{1.cal} [mg/g]$<br>$k_1 [1/min]$<br>$R^2$<br>$q_2 [mg/g]$<br>$q_{2.cal} [mg/g]$<br>$k_2 [g/g·min]$                                                       | 10       [mg/dm³]       Pseudo-first or       2.00       0.03       0.016       0.3757       Pseudo-secon       2.00       2.00               | La(III)-Ferrix A<br>50<br>[mg/dm <sup>3</sup> ]<br>rder model<br>10.00<br>0.14<br>0.016<br>0.3757<br>d order model<br>10.00<br>10.00<br>0.623           | <b>33E</b><br><b>100</b><br><b>[mg/dm<sup>3</sup>]</b><br>20.00<br>5.09<br>0.028<br>0.9344<br>20.00<br>20.12<br>0.025 | Kinetic<br>parameters $q_1 [mg/g]$<br>$q_{1.cal} [mg/g]$<br>$k_1 [1/min]$<br>$R^2$ $q_2 [mg/g]$<br>$q_{2.cal} [mg/g]$<br>$k_2 [g/g·min]$                     | 50<br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>9.99<br>1.80<br>0.026<br>0.8482<br>Pseudo-secon<br>9.99<br>10.04<br>0.063          | Nd(III)-Ferrix A<br>75<br>[mg/dm <sup>3</sup> ]<br>rder model<br>14.89<br>10.32<br>0.023<br>0.9533<br>d order model<br>14.89<br>15.27<br>0.006                                | <b>33E</b><br><b>100</b><br><b>[mg/dm<sup>3</sup>]</b><br>19.67<br>15.93<br>0.029<br>0.9175<br>19.67<br>20.18<br>0.004          |
| Kinetic<br>parameters $q_1 [mg/g]$<br>$q_{1.cal} [mg/g]$<br>$k_1 [1/min]$<br>$R^2$ $q_2 [mg/g]$<br>$q_2 [mg/g]$<br>$q_{2.cal} [mg/g]$<br>$k_2 [g/g·min]$<br>$h [mg/min]$ | 50<br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>9.73<br>3.00<br>0.018<br>0.8852<br>Pseudo-secon<br>9.73<br>9.80<br>0.030<br>2.865 | Nd(III)-As500<br>75<br>[mg/dm <sup>3</sup> ]<br>der model<br>11.84<br>4.83<br>0.018<br>0.9360<br>d order model<br>11.84<br>11.94<br>0.016<br>2.334 | 100<br>[mg/dm <sup>3</sup> ]<br>14.53<br>5.83<br>0.023<br>0.9428<br>14.53<br>14.65<br>0.017<br>3.600 | Kinetic<br>parameters<br>$\begin{array}{c} q_1 [mg/g] \\ q_{1.cal} [mg/g] \\ k_1 [1/min] \\ R^2 \\ \hline q_2 [mg/g] \\ q_{2.cal} [mg/g] \\ k_2 [g/g \cdot min] \\ h [mg/min] \\ \hline \end{array}$ | 10       [mg/dm³]       Pseudo-first or       2.00       0.03       0.016       0.3757       Pseudo-secon       2.00       3.113       12.454 | La(III)-Ferrix A<br>50<br>[mg/dm <sup>3</sup> ]<br>rder model<br>10.00<br>0.14<br>0.016<br>0.3757<br>d order model<br>10.00<br>10.00<br>0.623<br>62.270 | 33E     100     [mg/dm³]     20.00     5.09     0.028     0.9344     20.00     20.12     0.025     10.010             | Kinetic<br>parameters<br>$q_1 [mg/g]$<br>$q_{1.cal} [mg/g]$<br>$k_1 [1/min]$<br>$R^2$<br>$q_2 [mg/g]$<br>$q_{2.cal} [mg/g]$<br>$k_2 [g/g min]$<br>h [mg/min] | 50<br>[mg/dm <sup>3</sup> ]<br>Pseudo-first or<br>9.99<br>1.80<br>0.026<br>0.8482<br>Pseudo-secon<br>9.99<br>10.04<br>0.063<br>6.334 | Nd(III)-Ferrix A       75       [mg/dm³]       'der model       14.89       10.32       0.023       0.9533       d order model       14.89       15.27       0.006       1352 | <b>33E</b><br><b>100</b><br><b>[mg/dm<sup>3</sup>]</b><br>19.67<br>15.93<br>0.029<br>0.9175<br>19.67<br>20.18<br>0.004<br>1.773 |

Fig. 24. Determined kinetic parameters of the adsorption processes of La(III), Ce(III) and Nd(III).

# Parameters of adsorption isotherms

N

11

oxi

Table 3

### Table 1

The Langmuir and Freundlich parameters for adsorption of arsenic(V) and lanthanides(III) on As500.

| Ion     | Adsorption model      |       |                       |            |                |                       |  |  |  |  |
|---------|-----------------------|-------|-----------------------|------------|----------------|-----------------------|--|--|--|--|
|         | Ι                     | Jangm | uir                   | Freundlich |                |                       |  |  |  |  |
|         | <i>q</i> <sub>m</sub> | b     | <b>R</b> <sup>2</sup> | п          | K <sub>F</sub> | <b>R</b> <sup>2</sup> |  |  |  |  |
| As(V)   | 36.70                 | 0.033 | 0.9862                | 2.534      | 3.91           | 0.9502                |  |  |  |  |
| La(III) | 19.29                 | 0.620 | 0.9999                | 4.265      | 6.40           | 0.8947                |  |  |  |  |
| Nd(III) | 13.34                 | 0.270 | 0.9997                | 19.114     | 9.79           | 0.9463                |  |  |  |  |
| Ce(III) | 15.91                 | 0.399 | 0.9999                | 11.945     | 10.13          | 0.8587                |  |  |  |  |

#### Table 2

The Langmuir and Freundlich parameters for adsorption of arsenic(V) and lanthanides(III) on Ferrix A33E.

|         | Adsorption model |       |                       |            |                       |                       |  |  |
|---------|------------------|-------|-----------------------|------------|-----------------------|-----------------------|--|--|
| Ion     | ]                | Langm | uir                   | Freundlich |                       |                       |  |  |
|         | $q_m$            | b     | <b>R</b> <sup>2</sup> | п          | <b>K</b> <sub>F</sub> | <b>R</b> <sup>2</sup> |  |  |
| As(V)   | 35.96            | 0.081 | 0.9963                | 2.841      | 5.77                  | 0.8635                |  |  |
| La(III) | 58.95            | 6.439 | 1.0000                | 4.087      | 24.60                 | 0.6232                |  |  |
| Nd(III) | 39.52            | 0.585 | 0.9994                | 6.558      | 18.40                 | 0.8435                |  |  |
| Ce(III) | 60.57            | 0.985 | 1.0000                | 4.425      | 23.26                 | 0.7432                |  |  |

Comparison of the different sorbents based on oxides for arsenic removal.

| Adsorbent type                                                                    | рН  | Maximum<br>adsorption<br>capacity<br>[mg/g] | Authors                |
|-----------------------------------------------------------------------------------|-----|---------------------------------------------|------------------------|
| Fe <sub>3</sub> O <sub>4</sub> @SiO <sub>2</sub> @TiO <sub>2</sub><br>nanosorbent | 9.0 | 10.2                                        | (Feng et al., 2017)    |
| Mg doped α-Fe <sub>2</sub> O <sub>3</sub>                                         | 7.0 | 10                                          | (Tang et al., 2013)    |
| Fe <sub>3</sub> O <sub>4</sub>                                                    | 8.2 | 12.56                                       | (Akin et al., 2012)    |
| anoscale zero-valent<br>con-reduce graphite<br>de modified composite              | 7.0 | 29.04                                       | (Wang et al., 2014)    |
| Hydrated ferric<br>hydroxide                                                      | 9.0 | 7.0                                         | (Lenoble et al., 2002) |
| As500                                                                             | 6.0 | 36.70                                       | -                      |
| Ferrix A33E                                                                       | 6.0 | 35.96                                       | -                      |

### Selectivity



# Adsorption of arsenic on the sorbent modified with lanthanide 19 ions



**Fig. 26.** Enhanced arsenic adsorption caused by modification of As500 with lanthanide ions (As500,  $c_{As} = 100 \text{ mg/dm}^3$ , m = 0.1 g, t = 6 h).



**Fig. 27.** Enhanced arsenic adsorption caused by modification of Ferrix A33E with lanthanide ions (Ferrix A33E,  $c_{As} = 100 \text{ mg/dm}^3$ , m = 0,1 g, t = 6 h).

# Conclusions

The equilibrium of arsenic and lanthanide adsorption is achieved relatively quickly.

| Ion     | Adsorption model |             |                          |                      | odel                  |                       |                             |                                   |                                              |
|---------|------------------|-------------|--------------------------|----------------------|-----------------------|-----------------------|-----------------------------|-----------------------------------|----------------------------------------------|
|         | Ι                | Langmuir    |                          | nuir Freundlich      |                       | ch                    |                             |                                   | 80 -                                         |
|         | $q_m$            | b           | <b>R</b> <sup>2</sup>    | n                    | <b>K</b> <sub>F</sub> | <b>R</b> <sup>2</sup> | As500:                      | After sorption of                 | (%) 60 -                                     |
|         |                  |             | As5                      | 00                   |                       |                       | sorption capacity towards   | lanthanides                       |                                              |
| As(V)   | 36.70            | 0.033       | 0.9862                   | 2.534                | 3.91                  | 0.9502                | As(V)∏ 36.70 mg/g           | the sorption                      | 40 -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| La(III) | 19.29            | 0.620       | 0.9999                   | 4.265                | 6.40                  | 0.8947                |                             | capacities are even               | 20 -                                         |
| Nd(III) | 13.34            | 0.270       | 0.9997                   | 19.114               | 9.79                  | 0.9463                |                             | greater!                          | 10 -                                         |
| Ce(III) | 15.91            | 0.399       | 0.9999                   | 11.945               | 10.13                 | 0.8587                | Ferrix A33E:                | The highest increase              | unmodified                                   |
|         | 11111            | <u></u><br> | Adsorp                   | tion mo              | del                   |                       | sorption capacity towards   | of about 7 percentage             |                                              |
| Ion     | J                | Langm       | uir                      | Fr                   | eundli                | ch                    | As(V)∐ 35.96 mg/g           | points:                           |                                              |
|         | $q_m$            | b           | <b>R</b> <sup>2</sup>    | n                    | $K_F$                 | <b>R</b> <sup>2</sup> |                             | Nd(III) modification              | 100 -                                        |
| As(V)   | 35.96            | 0.081       | • <b>errix</b><br>0.9963 | <b>A33E</b><br>2.841 | 5.77                  | 0.8635                |                             | As500:                            | (%) /                                        |
| La(III) | 58.95            | 6.439       | 1.0000                   | 4.087                | 24.60                 | 0.6232                | Ferrix A33E has much larger | <del>85,8%</del> [] <b>92,09%</b> | - 08<br>- 08                                 |
| Nd(III) | 39.52            | 0.585       | 0.9994                   | 6.558                | 18.40                 | 0.8435                | sorption capacities towards | Ferrix A33E                       | oval ef                                      |
|         | 60.57            | 0.085       | 1 0000                   | 4.425                | 22.26                 | 0.7422                | lanthanide ions than As500  | <del>70,8%</del> [] 77,70%        | E 60 -                                       |
|         | 00.57            | 0.985       | 1.0000                   | 4.425                | 25.26                 | 0.7432                |                             |                                   |                                              |

Preeliminary results are very promising but much more research to optimize the process and regenerate the sorbents is needed.

This process can contribute to a significant reduction in the amount of arsenic in the environment.

As500

La(III) mod. Nd(III) mod.

Ferrix A33E

La(III) mod. Nd(III) mod. Ce(III) mod.

Ce(III) mod



### **References:**

1. Ng, J.C.; Wang, J.; Shraim, A. A global health problem caused by arsenic from natural sources. *Chemosphere* **2003**, *52*, 1353–1359.

2. Kartinen, E.O.; Martin, C.J. An overview of arsenic removal processes. *Desalination* **1995**, *103*, 79–88.

3. Bissen, M.; Vieillard-Baron, M.M.; Schindelin, A.J.; Frimmel, F.H. TiO2-catalyzed photooxidation of arsenite to arsenate in aqueous samples. *Chemosphere* **2001**, *44*, 751–757.

4. Feng, C.; Aldrich, C.; Eksteen, J.J.; Arrigan, D.W.M. Removal of arsenic from alkaline process waters of gold cyanidation by use of γ-Fe<sub>2</sub>O<sub>3</sub>@ZrO<sub>2</sub> nanosorbents. *Hydrometallurgy* **2017**, *174*, 71–77.

5. Tang, W.; Su, Y.; Li, Q.; Gao, S.; Shang, J.K. Mg-doping., a facile approach to impart enhanced arsenic adsorption performance and easy magnetic separation capability to  $\alpha$ - Fe<sub>2</sub>O<sub>3</sub> nanoadsorbents. *J. Mater. Chem. A* **2013**, *1*, 830–836.

6. Akin, I.; Arslan, G.; Tor, A.; Ersoz, M.; Cengeloglu, Y. Arsenic(V) removal from underground water by magnetic nanoparticles synthesized from waste red mud. *J. Hazard. Mater.* **2012**, *235–236*, 62–68.

Wang, C.; Luo, H.; Zhang, Z.; Wu, Y.; Zhang, J.; Chen, S. Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. *J. Hazard. Mater.* 2014, 268, 124–131.
Lenoble, V.; Bouras, O.; Deluchat, V.; Serpaud, B.; Bollinger, J.C. Arsenic adsorption onto pillared clays and iron oxides. *J. Colloid Interface Sci.* 2002, 255, 52–58.

# Thank you for your attention!