Selecting the optimal WWTP configuration including resource recovery units

Živko Južnič-Zonta*, Albert Guisasola, Juan Antonio Baeza

GENOCOV. Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Catalonia, Spain

7th International Conference on Sustainable Solid Waste Management - 26th June 2019

*Presenting author
SMART-Plant

Scale-up of low-carbon footprint Material Recovery Techniques for upgrading existing WWTP

Funded by the Horizon 2020 Framework Programme of the European Union under grant agreement No 690323
SMART-Plant

MAIN GOAL

REDUCE energy and environmental footprint
RECOVER valuable materials (water, cellulose, biopolymers, nutrients)
PRODUCE products exploitable in construction, chemical and agriculture

DSS for selecting the optimal WWTP configuration including resource recovery units
Scale-up of low-carbon footprint Material Recovery Techniques for upgrading existing WWTP

DSS for selecting the optimal WWTP configuration including resource recovery units
Scale-up of low-carbon footprint Material Recovery Techniques for upgrading existing WWTP

SMART-Plant

Total EC funding

7,5M€
SMART-Plant

Scale-up of low-carbon footprint Material Recovery Techniques for upgrading existing WWTP

DSS for selecting the optimal WWTP configuration including resource recovery units

Partners

26
SMART-Plant

DSS objective
Advise the potential stakeholders on how to implement the SMART-Plant Technologies for their specific wastewater treatment problem

SMARTech pilot-plants
SMARTech process models
• Complex dynamics (ASM2d, ADM1)
• Discrete events (SBR)
• Complex control systems
• Large system of differential-algebraic equations (DAE)
Dynamic fine-screen and post-processing of cellulosic sludge (ST1)

DSS for selecting the optimal WWTP configuration including resource recovery units
Polyurethane-based anaerobic digestion bio-filter (ST2a)

DSS for selecting the optimal WWTP configuration including resource recovery units
Short-Cut Enhanced Phosphorus and PHA Recovery (SCEPPHAR) main-stream process (ST2b)

DSS for selecting the optimal WWTP configuration including resource recovery units

Energy

Biopolymers

Cellulose

Nutrients
Tertiary hybrid ion exchange for N and P nutrients recovery (ST3)

DSS for selecting the optimal WWTP configuration including resource recovery units
Short-Cut Enhanced Nutrient Abatement (SCENA) and ordinary digestion side-stream process (ST4a)

DSS for selecting the optimal WWTP configuration including resource recovery units
SCENA and CAMBI-enhanced digestion side-stream process (ST4b)

DSS for selecting the optimal WWTP configuration including resource recovery units
SCEPPHAR side-stream process (ST5)

DSS for selecting the optimal WWTP configuration including resource recovery units
Which plant configuration is best for me?

Try our hyper-tech solution Decision Support System!
STEP1: Design problem set-up
- New design or retrofit
- Geo-location (weather)
- PE, legal limits, etc.
STEP2: Wastewater inflow generation

- Dry weather model
- Wet weather model
- Sewer model

DSS for selecting the optimal WWTP configuration including resource recovery units
STEP3: Superstructure generation and simulation
STEP3: Superstructure generation and simulation

Conventional A2O process

Redeclare Stage3 with ST2b

Automatic built-up of WWTP configurations

DSS for selecting the optimal WWTP configuration including resource recovery units
STEP4: Objective values estimation
- Effluent Quality Index (EQI)
- Frequency Effluent Violations (FEV)
- Net Present Value (NPV)
- GreenHouse Gas (GHG) emissions

Compute for all possible WWTP design configs!
STEP5: Design configuration sorting

Multi Criteria Decision Making (MCDM) based on user preferences technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

DSS for selecting the optimal WWTP configuration including resource recovery units
STEP6: Design parameter optimization
Minimize NPV optimizing Volume, S/L separation capacity, etc.
Constraints on FEV, HRT, SOR, etc.
Decrease configurations to optimize with MCDM
STEP7: Uncertainty analysis
Input and parameter uncertainty
Sensitivity analysis given the optimal design
Conclusions

• Design is based on dynamic and static process models
• Effluent limits fully accounted
• Design of discrete event processes (e.g. SBR)
• Design integrates the WWTP control system
• Influent model for Europe

For future work
• Test global optimization strategies for design optimization
• Build user friendly web-interface
• Perform simulations in a distributed computing environment
• Integrate other resource recovery technologies
• Increase the range of application of the inflow model to North America
• Integrate Life Cycle Analysis frameworks
Questions?
Selecting the optimal WWTP configuration including resource recovery units

Živko Južnič-Zonta*, Albert Guisasola, Juan Antonio Baeza

GENOCOV. Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Catalonia, Spain

7th International Conference on Sustainable Solid Waste Management - 26th June 2019