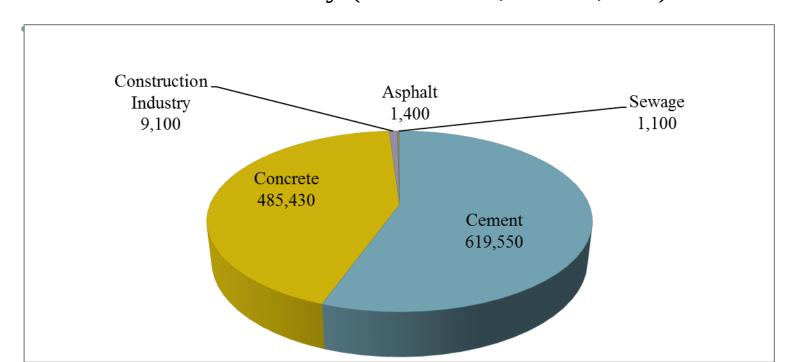


Coal Consumption and Ash Production in Israel – 2018

Electrical Power (~6,000Mwatts)

- 4 Power Plants
- 6 Million Tons Bituminous Coal/year
- 0.70 Million Tons of Class F Fly Ash (FA)
 (1.3 Million Tons in 2015 Natural Gas)
- Sources (South Africa, Colombia, Russia, USA and Australia)

FA utilization and Disposal (worldwide)

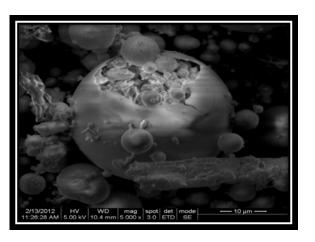

- Cement additive (10%w)
- Aggregates for roads
- Marine structures
- Bricks
- Basement materials
- Reclamation
- Chemicals

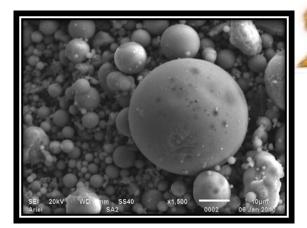
FA Utilization in Israel in 2014 (100%)

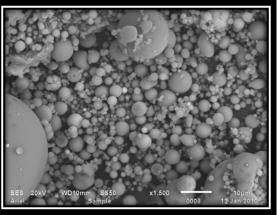
- Cement Additive (10w%)
- Concrete Production
- Construction Industry (Basements, Fillers, etc.)

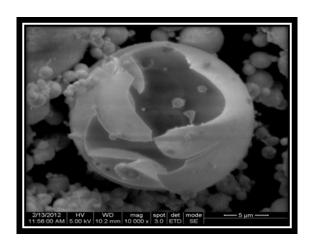
FA as a Chemical Reagent

- Source for chemicals (e.g. SiO₂, Ti,
 Zeolites)
- Water treatment (cleaning from trace elements
- Fixation of radionuclides?

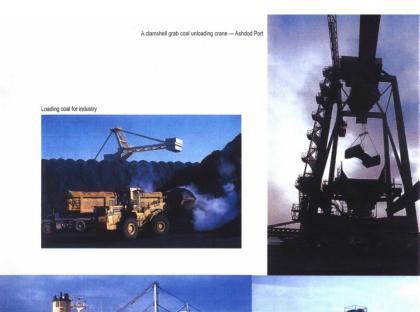

FA Properties


Small particles – 3-17 µm


Large surface area (2-6.8x10³ cm²/gr)


Strong interactions in aqueous solution:

- Cations
- Coordination bonding
- Precipitates



Coal and Ash Storage

Ashklon Utility

FA in Israel is Class F (highly basic)

- Produced from low S coal combustion
- High CaO content (up to 10%)
- [Ca+K+Na+Mg]>>[S+P]
- Water/FA 10/1 (resulting pH>12.5)

Conclusion: FA good scrubber for acidic wastes

Potential scrubber for Trace

Elements

Element	SA	COL
SiO ₂	42.8	54.4
Al_2O_3	31.4	20.8
TiO ₂	1.75	1.05
$\mathbf{Fe}_{2}\mathbf{O}_{3}$	3.05	6.18
CaO	9.91	4.65
MgO	2.45	2.05
K ₂ O	0.05	0.12
Na ₂ O	0.02	0.05
$\mathbf{P}_{2}\mathbf{O}_{5}$	1.95	0.75
С	4-5	7-9
CO	0.05	0.10

R

Minor Components (ppm)

Element	SA	COL
Ag	13.6	42.8
As	<1	31.4
Ba	2,350	1.75
Be	9.43	3.05
Cd	<2	8.35
Co	40	2.45
Cr	150	0.05
Cu	77	0.02
Mn	360	1.95
Ni	68	4-5
Pb	73	0.35

:Major Acidic waste in Israel

Phosphate Industry

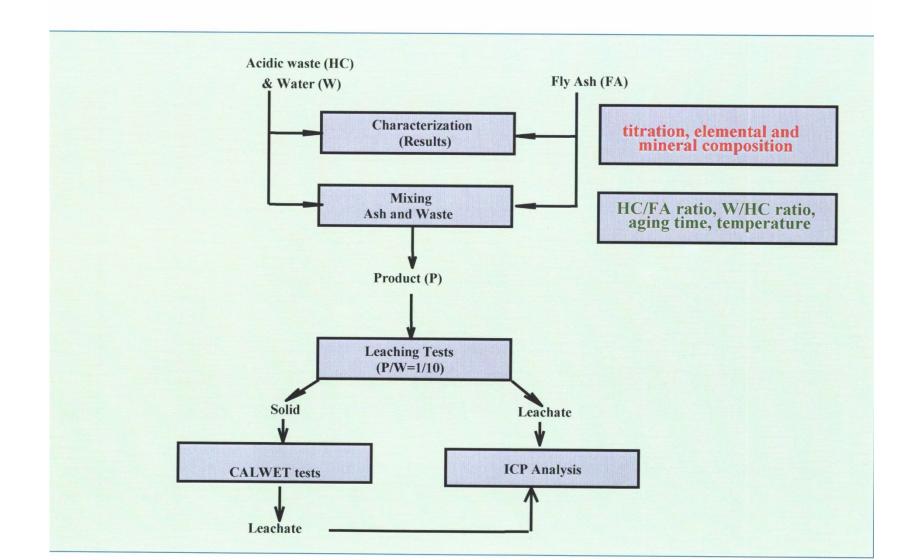
Liquid aqueous solutions (*Haifa Chemicals South-HCl/Rotem Amfert-H₂SO₄*):

pH \sim 0-1 (0.1-1M HCl/H₂SO₄); \sim 0.1% Organics; 0.1-0.2% Precipitates

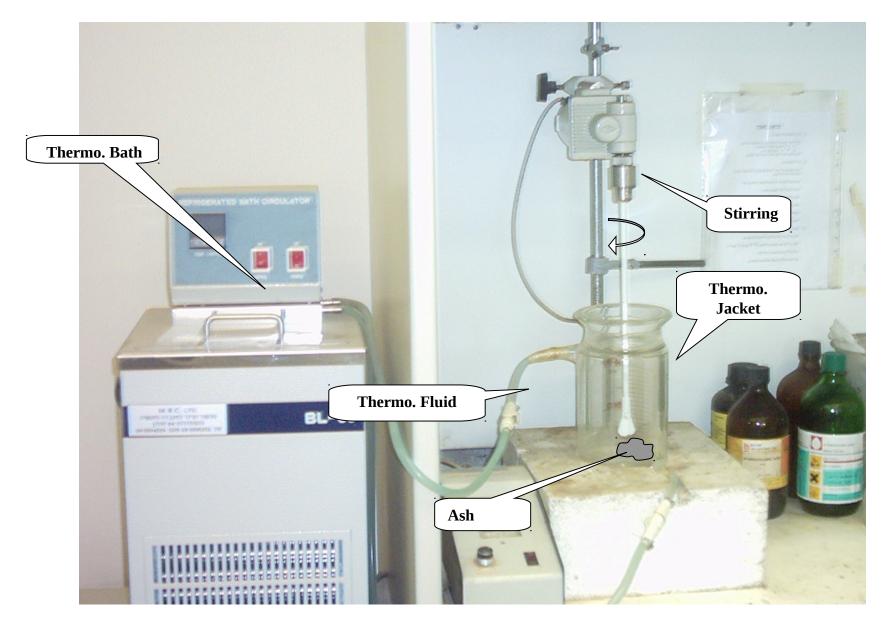
Solution content:

~1% PO₄³⁻; ~0.4% Si; ~0.1-1M Cl

100-1,000 ppm: Fe, B, Sr, Ba, Mg, Zn, Na, K


sub-few ppm: Ag, As, Be, Cd, Co, Cr, Cu, Mn, Ni, Se,

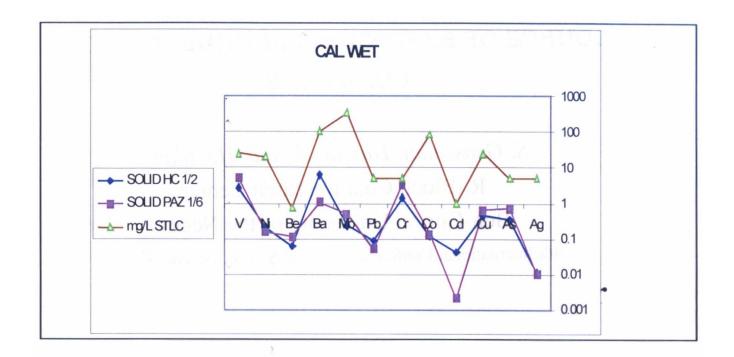
Sn, U, Ti, TI, V



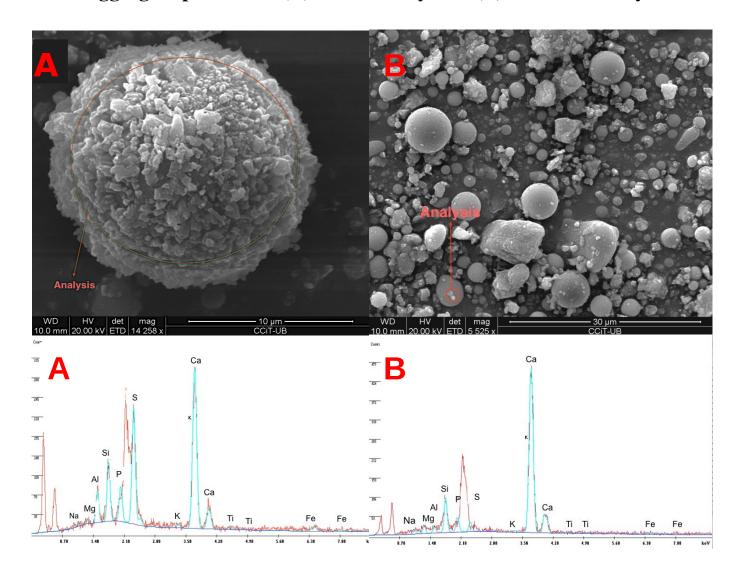
General methodology used in the study

Phosphate Waste – Scrubbing Process

- Duration 20 minutes
- No Water Addition
- Solid Product


Product

Grey aggregate (sand like)



Aggregate Products leaching with the CALWET method

SEM and EDAX of aggregate products – (A) –with SA fly ash (B) –with COM fly ash

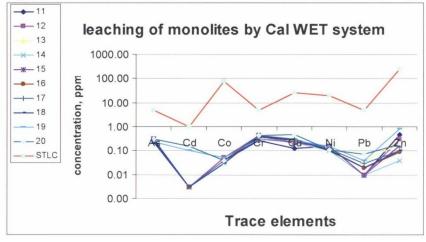
Fixation Mechanisms

- Ion Exchange Action
- Chemical Bonding
- Electrostatic Interaction of Solids

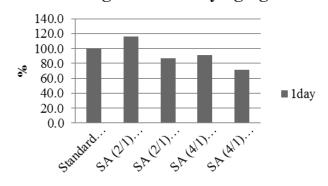
Source of fixation:

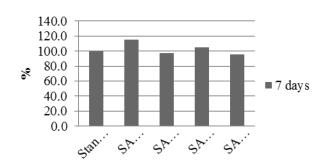
-SiO₃-, -AlO₂- + large surface area

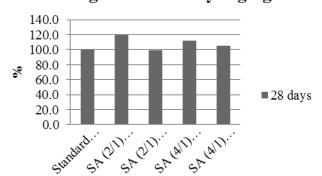
EN 12457-2 leaching method

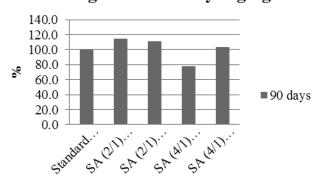

	Decision 2003/33/EC		
mg/kg	Inert	Non hazardous	Hazardous
SO ₄	1000	20000	50000
Cr	0.5	10	70
Ni	0.4	10	40
Zn	4	50	200
As	0.5	2	25
Se	0.1	0.5	7
Мо	0.3	10	30
Cd	0.04	1	5
Sb	0.02	0.7	5
Ва	20	100	300
Pb	0.5	10	50

monoliths



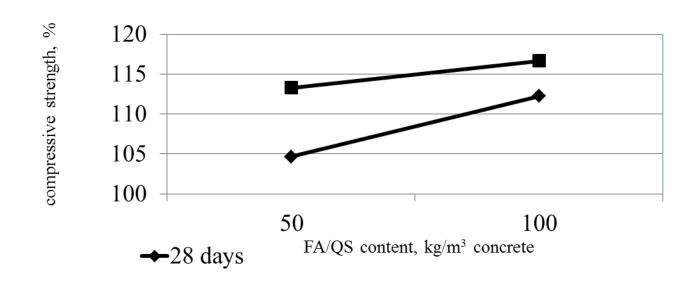

Scrubbed Waste Product - Phosphate Industry


Strength test - 1 day aging


Strength test - 7 days aging

Strength test - 28 days aging

Strength test - 90 days aging



Non Hazardous Material (European Directive EN14257)

Scrubbed Waste Product – Quarry Sludge

Non Hazardous Material (European Directive EN14257)

S\$\$ Economics of Ash utilization

- Price of 1ton of cement ~100 \$
- Price of treatment of 1 ton of acidic sludge
 ~10\$
- 100 kg of treated product substitutes cement and aggregates in 1 ton of concrete=10\$
- No storage needed

Coal Fly Ash = Golden Treasure

Conclusions

- (i) Class F coal fly ash is an excellent scrubber and fixation reagent for acidic wastes, trace elements and fine precipitates
- (ii) The fixation product is a good aggregate

 (environmentally green!!! improved TCLP1311 or

 European 12457 directive or CALWET for concrete) and
 can be used as a partial replacement in the concrete or
 brick industry
- (iii) It's economic value as a chemical reagent is much higher compared to it's value in the construction industry
- (iv) Ashes from Oil Shales and Lignites are also potential candidates as substitutes to coal fly ash

Acknowledgements Prof. Itamar Pelly (BGU)

- Mr. Omri Lulav (Coal Ash Administration)
- Dr. Eli Lederman (BGU)
- **Prof. Mehmet Polat (Iztek, Izmir, Turkey)**
- Mike Werner (Freiberg, Germany)
- Dr. Ariel Goldman (AUC)
- **Stephan Mertens (Freiberg, Germany)**
- Giora Segev (IAEC)
- Dr. Constantin Freiman (BGU)
- Dr. Eyal Alush (NRCN)

Technical and Financial Assistance

- Israel Electric Co.
- Paz Schmanim
- Haifa Chemicals, Rotem Amfert
- \$ Israeli Coal Ash Association
- \$ Israeli National Coal Supply Co. Israel Ltd.

Thank you for listening