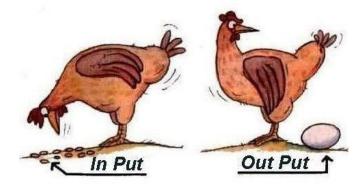
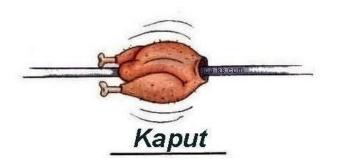
Valorization of waste products from poultry industry

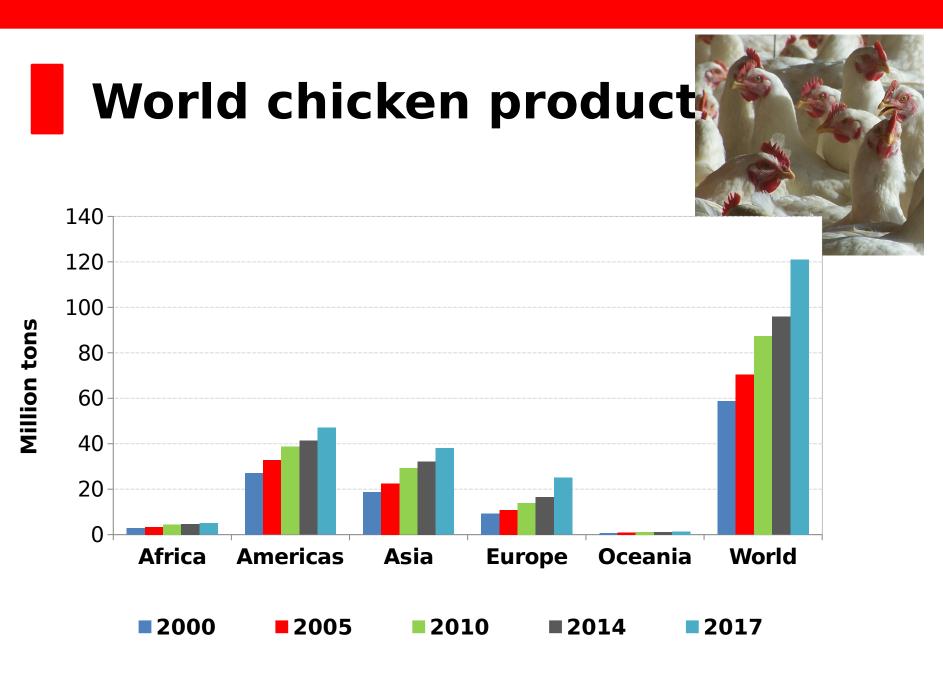

BIORAF Centrum kompetence pro výzkum biorafinací


T A Č R BIORAF TE 01020080

Hana Stiborová University of Chemistry and Technology, Prague

Why waste from poult industry?

Chicken Lifestyle



Enormous amount of waste products

Global poultry trends ,2014,

Poultry waste productsSlaughter yields71 - 79%

Chicken waste products:

1. Feather (6-9% of weight of chicken)

- 2. Skin
- 3. Organs (*e.g.* intestine, lung)
- 4. Claws
- 5. Fat
- 6. Blood

7. Waste mixture after mechanical deboning (6-8% of weight of chicken)

Feather waste

The feather production Czech Republic - around 12 thousand of tonnes annually Worldwide - around 6-8 millions of tonnes annually

What happens with feather?

Feather composition

- Over 90% protein, majority is beta-keratine, insoluble structural protein
- Fat 2%

<u>Raw</u> feather hydrolys

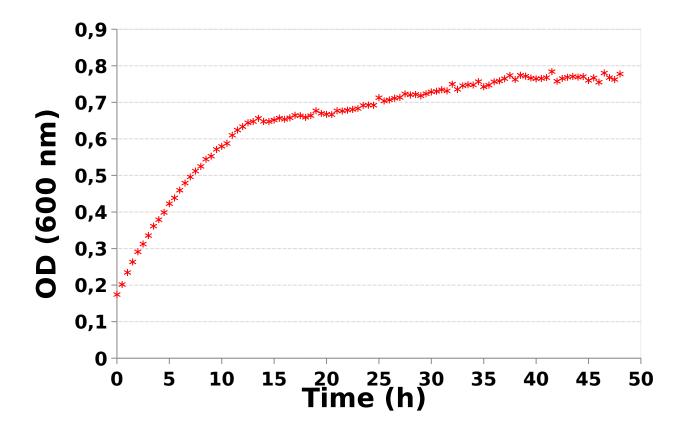
Mhole cell microbial hydrolysis

- using strains with keratinolytic activities

Enzymatic hydrolysis
- using semipurified keratinase

Chemical hydrolysis
Compare Ithe ondition
hydrolysates °C

Feather hydrolysates


Type of	Amino acids	Peptides [g/L]
hydrolysis	[g/L]	
Pseudomonas sp. P5	0.30 ± 0.03	6.2 ± 0.2
(A) <i>Pseudomonas</i> sp. P5	0.27 ± 0.07	4.6 ± 0.1
(B)		
Keratinase (A)	1.05 ± 0.15	3.2 ± 0.2
Keratinase (B)	1.09 ± 0.08	3.3 ± 0.2
Alkali cond. (A)	0.33 ± 0.05	17.2 ± 2.6
Alkali cond. (B)	0.38 ± 0.02	14.3 ± 0.1

A - The initial amount of wet raw feather material was 90 g/L (31.9 g of dry feather /L).

B - The initial amount of wet raw feather material was 70 g/L (24.9 g of dry feather g/L).

Hydrolysates - source of nutrients for bacterial growth

Hydrolysates – sterilized, neutralized with HCl (alkali hydrolysis) Tested microorganism – *Escherichia coli* Biomass concentration measured for 48 h on Bioscreen system

Hydrolyzates obtained by \hbar Alkali, \hbar Enzymatic, \hbar Microbial \hbar Luria-Bertani broth, \hbar Control - unhydrolyzed feather

Alkaline hydrolysis - semi-scale operation

5 L volume Temperature70 °C 0.6% NaOH Dispensator Ultra-Turrax T50

Feather hydrolysis 90%

Before hydrolysis hydrolysis After

Conclusions - feather re-utilization

Application of hydrolysates:

- Organic fertilizers
- Peptone substituent in a culture media
- Low cost supplements
- In cosmetics

Publication:

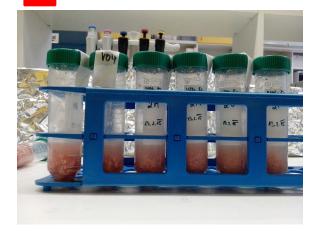
Stiborova H., *et al.*: Transformation of raw feather waste into digestible peptides and amino acids., J. Chem. Technol. Biotechnol. 2016, 91: 1629-1637

Patent:

PV 2015-102: Complete cultivation medium for production of ethanol or butanol, its production ways and production ways of ethanol or butanol - Patakova P., *et al.*

Waste after mechanical deboning

Waste after mechanical deboning - 6-8% weight of chicken Contain - cartilage, bones and skin and meat


Mechanical separator

Wast e

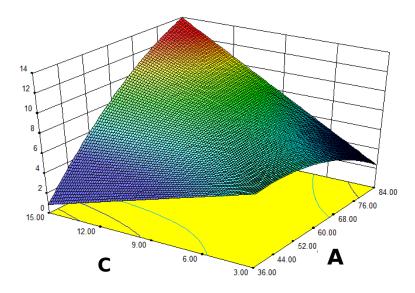
Process of bioactive compounds Waste after mechanical deboning olation Filtration of the hydrolyzate through kieselduhr Phosphate buffer Product concentration Sterilization Lyofilization or drying Hydrolysis - papain **Product - CHONDROMIX** Enzyme inactivation Removal of unhydrolyzed parts Chondroitin, hyaluronic acid, peptides, Fat separation amino acids

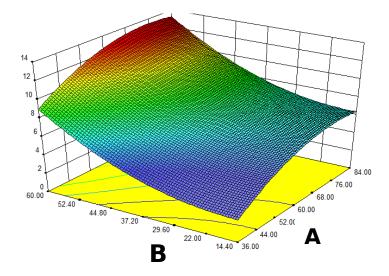
Product CHONDROMIX - processing scale-up

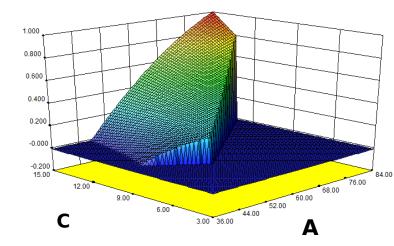
Lab-scale: 10 g

Lab-scale: 60 -600 g of waste

Product CHONDROMIX


Semi-scale: 25 kg of


Product


Process optimization

- to obtain minimum 10% of hydrolyzate (containing at least 10% hyaluronic acid)

8

Desirability

Process optimization - Expert Design

A - volume of buffer/60 g of waste material

tested from 36 to 84 ml

B - amount of enzyme (papaine)/60 g of waste material

tested from 14.4 mg to 60 mg/60 g of waste material

C - time of hydrolysis

Products comparision

Pure cartilage mixture product Source - pure

cartilag

Source - waste after mechanical deboning

CHONDROMIX

Patent - WO2012143324 Mixture

- chondroitin sulfate 15% 25% (w/w) chondroitin sulfate 6% 17% (w/w)
- hyaluronic acids 0.1-1.0% (w/w) hyaluronic acids 10 15% (w/w)

Patent - PV 2016-788 Mixture

- protein and peptides 67% - 87% (w/w) protein and peptides 60% - 80% (w/w)

amino acids up to 3%

Stiborova et al. Waste products from the poultry industry: a source of high-value dietary supplements, J. Chem. Technol. Biotechnol., contod

Founding and team collabor T A

Founded by Technological Agency of the Czecu Republic BIO

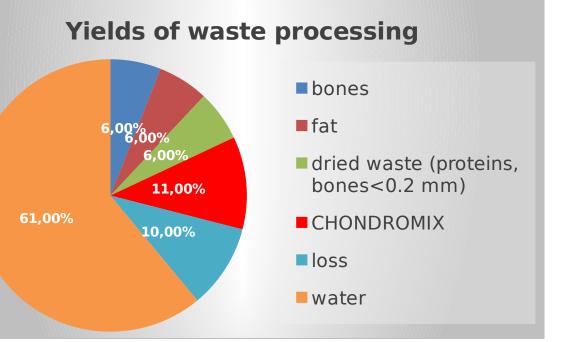
- project BIORAF TE 01020080

Teams from University of Chemistry and Control Technology

Group of prof. Demnerová – Dr. Hana Stiborová, doc. Dr. Petra Lovecká Group of prof. Melzoch – doc. Dr. Petra Patáková, Dr. Barbora Branská, Dr. Leona Paulová Group of prof. Hajšlová and prof. Poustka – doc. Dr. Milena Zachariášová, Dr. Monika Jírů

Ecofuel Laboratory s.r.o.

- Dr. Petr Kaštánek and Ing.



Product CHONDROMIX – from waste after mechanical deboning

Product -CHONDROMIX

