

Utilization of organosolv pretreated lignocellulosic biomass for the production of omega-3 fatty acids by the marine microalgae *Crypthecodinium cohnii* and lactic acid by *Lactobacillus delbrueckii* A. Karnaouri⁺, P. Kostopoulos⁺, A. Chaima⁺, G. Asimakopoulou¹, D. Perraki¹, K. Kalogiannis², A. Lappas², E. Topakas ¹

¹ Biotechnology Laboratory, Shcool of Chemical Engineering, National Technical University of Athens (NTUA), Greece

² Chemical Process and Energy Resource Institute (CPERI/CERTH), Thessaloniki, Greece

Valorization of lignocellulosic biomass on the forefront of sustainability and circular

economy

- ✓ Greece has a developed *agricultural sector* that supports a big part of the economy.
- ✓ EU mandates about CO₂ emissions and sustainability of all production processes have given a significant boost to the *biorefinery concept*.
- For biorefineries to be economically viable, they need to produce *high added value products* with <u>close to</u> <u>zero wastes</u>, satisfying niche markets such as the food and pharmaceutical ones.

"Novel Conversion Technologies of Waste Biomass to Food additives and Fine Chemicals", funded by Hellenic Foundation for Research & Innovation

The overall scheme of NoWasteBioTech

Biomass pretreatment and efficient fractionation

Omega-3 fatty acids as important nutraceuticals

Functional products and Nutraceuticals:

- Nutraceuticals are standardized grade of food sources derived from food sources, which contain one or more bioactive compounds
- extra benefits in addition to basic nutritional value found in food (prevention or treatment of various diseases).
- addition of small amount of nutraceuticals in foods (1-5%) adds *higher value to the final products*.
- the demand for functional foods and beverages, especially for *omega-3 fatty acid fortified products*, has increased significantly in the past few years, due to the increase in the cost

Production of Ω -3 fatty acids from marine microalgae

- Production of Ω-3 polyunsaturated fatty acids (PUFAs), especially those with with long chain (LC-PUFAs)
- microalgae oil is rich in EPA (20:5n-3) and DHA (22:6n-3) [] recognized as bioactive compounds of pivotal importance
- microalgae oil is an attractive alternative to fish oil (its sustainable supply has been challenged due to the reduction of fish resources worldwide
- marine heterotrophic microalgae that belong to Dinoflagellata

The heterotrophic dinoflagellate Crypthecodenium

- Crypthecodinium cohnii, a flagellated marine microalga, is considered as a prolific DHA producer.
- ✓ The strain ATCC 30772 is able to grow utilizing a variety of different carbon sources, such as short chain fatty acids (acetic, propionic, butyric acid), ethanol, sugars (glucose, galactose, lactose)
- ✓ The accumulation of lipids reaches up to 45-50% of dry cell weight, with DHA to comprise up to 60% of total fatty acids
- ✓ GRN 41; "DHASCO (docosahexaenoic acid-rich single-cell oil) from *Crypthecodinium cohnii* for use in infant formula" (USA, 2001)

Κύτταρα του μικροφύκους C. cohnii x40 (a) και x100 (b)

Efficient production of omega-3 fatty acids from *C. cohnii*

Cultivation strategy

- ✓ Cultivation on shake flasks, 120h
- ✓ Nitrogen source: yeast extract 2 g/lt
- ✓ Sea salts 25 g/lt
- Carbon source: pure sugars, enzymatically hydrolyzed lignocellulosic biomass-derived sugars

(SHF process)

Analysis of ω-3 fatty acids

- Harvesting the microalgae cells Freeze drying
- Determination of dry cell weight gravimetrically
- Extraction of fatty acids with modified Folch method (CHCl₃/MeOH)

2:1(v/v)

Trans-esterification and analysis of FAMEs with GC-MS

Pure sugars as carbon sources for *C. cohnii*

	Biomass	Biomass (mg/g		TFA		DHA	
Sugar	g/lt	consumed)	% TFA	(g/lt)	% DHA	(g/lt)	
Glucose	9.67	306	43.03	4.16	29.98	1.25	
Xylose	1.40	312	37.32	0.52	5.66	0.03	
Mannos							
e	<u>(1.23-</u>)	187	45.40	-0.56-	17.78-	-0.10	Incubation time (hours)
arabinos	JJ		l			j	
e	1.18	126	46.57	0.55	18.55	0.10	
Glc/ligni							
n 50.50	10.86	354	47.90	5.20	27.14	1.41	
Glc/HMF	7.08	320	35.24	2.50	22.95	0.57	
Glc/Xyl*	4.27	296	40.04	1.71	31.47	0.54	

Microalgae biomass

C. connii prefers glucose as a carbon source over other sugars present in biomass

 \checkmark No catabolic repression by the simultaneous presence of hexose and pentose (gluc

- Presence of lignin can possibly affect positively the microalgae metabolism for enhanced DHA production
- ✓ Presence of furans inhibit cell growth and lipid accumulation

Enzymatic hydrolysis and Saccharification

- Hydrolysis with Cellic Ctec2[®], enzyme loading 15mg/g substra
- 50°C, MES bufffer 80mM pH 5.5, 160rpm agitation, 48 hours

						/~ <u>`</u>
			%		%	
		%	hemicellulo	%	solubilizatio	% cellulose
bee	Pretreatment conditions	cellulose	se	lignin	n	conversion
°chv	H ₂ O/THF (50/50%), O ₂ 12 bar, 175°C,					
VOO	120min	80.11	11.39	5.77	56.39	78.28
<u>م</u> nino	H ₂ O/ACO (50/50%), O ₂ 25 bar, 175°C,					
pine	120min	80.28	12.26	1.58	67.05	68.52
	H ₂ O/ACO (50/50%), O ₂ 12 bar, 175°C,					*
	C O ma i m		10.21			74.70

Biomass-derived sugars for the sustainable production of ω -3 fatty acids

		Biomass	biomass (mg/g				
	Pretreatment conditions	g/lt	consumed)	% TFA	TFA (g/lt)	% DHA	DHA (g/lt)
	H ₂ O/THF (50/50%), O ₂ 12 bar, 175°C,						
σ	120min	7.39	320	44.18	3.27	23.89	0.78
eec –	H ₂ O/ACO (50/50%), O ₂ 25 bar, 175°C,						
hw	120min	7.71	312	38.22	2.95	23.15	0.68
ood	H ₂ O/ACO (50/50%), O ₂ 12 bar, 175°C,						
_ pine_	60min	7.76	304	33.45	2.60	27.14	0.70
	Glucose	9.67	306	43.03	4.16	29.98	1.25
	60min	8.72	325	39.06	3.41	26.85	0.91
	H ₂ O/THF (50/50%), O ₂ 12 bar, 175°C,					-	
	60min	7,98	328tty ac	id5 5.71		-	0.75
	H ₂ O/EtOH (50/50%), O ₂ 16 bar, 175°C,		composit	ion			
	60min	1esize 5.47	294 C16	38.66		DHA	.49
	omega-3 fatty actus		C18:0			<i>th</i>	C EPA Z
			C18:1				
			C22:0 (DH	IA)			
							Bio le

ste

Lactic Acid

- a valuable chemical platform that has extensive applications: food, cosmetics, textiles, pharmaceutical, and chemical industries
- The raw substrate materials for LA production constitute 40–70% of the total production cost, which is a challenge for cost- effective LA fermentation
- there has been a growing interest in the use of lignocellulosic was Feedstock from Non-Edible Renewable Resources
 rials are abundant,

rene

Agricultural wastes,

Agricultural wastes, forestry products/wastes, and other lignocellulosic waste materials

gar content without

Through Lactic Acid Bacteria

Sustainable production of Lactic Acid from biomass

Lactic acid production by Lactobacillus delbrueckii

- Lactobacillus delbrueckii was able to utilize glucose, mannose and galactose to achieve high production yields of lactic acid
- During bioconversion, LA accumulation acidifies the fermentation broth, causing inhibition to bacteria metabolism and thus limiting the process efficiency and yield; addition of CaCO₃ can *efficiently alleviate the adverse effects of low pH* and boost the production of lactic acid.

	<u>mg lactic/ g sugar</u>				
<u>sugar</u>	<u>(168h)</u>				
glucose	939 ± 19				
mannose	855 ± 2				
arabinose	-				
galactose	903 ± 26				
xylose	-				

Lactic acid yields produced by utilizing pure sugars (6% w/v) as carbon source

Lactic acid production by utilizing lignocellulosic biomass

LA production from *L. delbrueckii* and SSF using organosolv pretreated biomass at 45°C, 9% initial dry matter, with an enzyme loading of 9mg/ g of biomass, after 168h of fermentation. (*ACO: acetone, EtOH: ethanol, THF: tetrahydrofuran*)

	Biomass pretreatment	Cellulose %	Hemicellulose %	Lactic acid (g/lt)	mg lactic acid/g biomass	% theoretical yield	
	H ₂ O/ACO (50/50%), O ₂ 8 bar, 160°C, 120min	66.77	18,36	77.11	756	79.60 ± 8.16	
	H ₂ O/ACO (50/50%), O ₂ 16 bar, 160°C, 120min	76.63	13.32	61.07	678	67.67 ± 2.32	
	H ₂ O/ACO (50/50%), O ₂ 8 bar, 175°C, 120min	82.3	13.9	50.5	561	52.36 ± 1.01	
	H ₂ O/ACO (50/50%), O ₂ 16 bar, 175°C, 30min	79.74	15.69	64.56	717	67.43 ± 2.87	
	H ₂ O/EtOH (50/50%), O ₂ 16 bar, 160°C, 120min	72.96	16.03	52.5	583	58.72 ± 4.98	
	H ₂ O/EtOH (50/50%), O ₂ 16 bar, 175°C, 60min	81.28	13.99	67.1	745	70.21 ± 0.91	
	H ₂ O/THF (50/50%), O ₂ 16 bar, 150°C, 120min	73.09	13.3	78.93	837	86.97 ± 6.7	
	H ₂ O/ THF (50/50%), O ₂ 16 bar, 160°C, 120min	79.13	12.1	85.7	912	89.78 ± 10.1	
	H ₂ O/THF (50/50%), O ₂ 16 bar, 160°C, 60min	68.99	15.55	72.96	785	83.29 ± 1.14	
	H ₂ O/ THF (50/50%), O ₂ 16 bar, 175°C, 60min	85.28	10.82	53.23	591	55.25 ± 0.42	

Conclusions – Future work

- Lignocellulosic biomass can be used for the production of value-added products, such as omega-3 fatty acids and lactic acid, through *environmentally friendly bioconversion processes*.
- Wet oxidation in presence of organic solvents is an efficient pretreatment method for the fractionation of lignocellulosic biomass.
- Fermentation of microalgae needs to be optimized to maximize the accumulation of fatty acids and boost the mechanism of DHA synthesis (fermentation strategy, effect of C/N ratio ect.)
- Utilization of pretreatment liquid fraction in order to achieve a zero-waste, holistic approach for the valorization of lignocellulosic biomass waste streams.

Biotechnology Laboratory, School of Chemical Engineer

<u>NTUA</u>

Assist. Prof. Evangelos Topakas

Angelina Chalima Georgia Asimakopoulou Panagiotis Kostopoulos Dioni Perraki

Despoina Varamogianni

Chome Process and Energy Resource Institute (CPERI/CERTH) Dr. Kontantinos Kalogiannis Prof. Angelos Lappas

Thank you for your attention!

