

Effect of co-digestion on energy economics in anaerobic digestion of rice straw and dairy manure

Dr. P.Venkateswara Rao

Associate Professor Water and Environment Division Department of Civil Engineering National Institute of Technology Warangal, INDIA Email: pvenku@nitw.ac.in +91 9420161800

Contents

Introduction

Materials & Methods
Results & Discussion
Conclusion

Introduction

- Notable surge in the generation of organic wastes
- Uncontrolled dumping greenhouse gas emissions and climate change.

Municipal waste dumping yard Madikonda, Waranal, India

Introduction

Emissions due to uncontrolled anaerobic digestion and open burning

Introduction

- Conventional landfilling and incineration can no longer be used because of their detrimental environmental effects.
 - Adopting a technology with energy & nutrient recovery will be an environmentally sound option.
- Anaerobic digestion can be used to manage the several organic wastes including animal manure.

Introduction

GHGs reduction, Better handling of organic wastes, Environmental friendly.

Anaerobic Digestion

- Anaerobic digestion is conventionally used to manage the **cattle dung** and has been popular in India for a long period.
- Partially answers "energy-nutrient-environmental pollution" crisis.
 - **3.8 million** anaerobic digestion plants installed so far in India against the potential of **12.4 million** anaerobic digestion plants (in the capacity range of 1-6 m³).
- Technical, institutional, policy and financial barriers preventing to use at optimal capacities.
- Need for transformation of "highly potential" technology to HERAbighly performing" technology.

Research gaps & Objectives

Research gaps

- Net energy balance in involved in anaerobic digestion in comparison of mono-digestion and co-digestion of organic wastes is limited.
- The economics of the anaerobic digestion of dairy manure, rice straw is limited.
- Objectives
- To evaluate net energy production in anaerobic mono and codigestion of rice straw and dairy manure.
- I To evaluate economic feasibility in anaerobic mono and codigestion of rice straw and dairy manure.

Materials & Methods

Energy Economics

- The large scale anaerobic digestion plant was assumed to produce 80 % of the cumulative methane generated at laboratory scale (B. Ruffino 2015 et al).
- The plant was assumed to be equipped with combined heat
 And power system (CHP) to convert biogas to electrical and thermal energy.
- The lower heating value (LHV) of methane is 39.62 MJ/m³ (E.
 A. Scano 2014 et al)
- The standard electrical efficiency of the CHP system was considered to be 35 % and thermal efficiency was considered to be 50 % (E. A. Scano 2014 et al).

Shredding

In the current study, the energy consumption 207 MJ/t for shredding was assumed.

Conveyance

Two series connected screw conveyors between the silo and feed tank, each with a motor capacity of 5 KW was considered.

Pumping system.

- The pump (0.5 kW) will be able to deliver manure to the bioreactor with a capacity of 10 m³/h
- I Its efficiency is assumed to be 0.5.

Heat Energy

- Heat Energy is required for two reasons
- I To heat the feeding substrate ,
- I To maintain the temperature against heat losses from the digester wall

Energy Economics

Energy Economics

- Evaluated the cost of unit electrical energy produced through an aerobic digestion of organic wasternises
- Cost of energy = $\frac{(Total capital cost*Capital charge rate)+0&M cost}{T}$
- Cost of energy = Electricity produced in a year(kWh)
 Assumptions (eficio et al 2014)
 Assumptions (eficio et al 2014)
 Total capital cost of 200 m³ anaerobic digestion
 plant=
 plant=
 Cost of 200 m³ anaerobic digestion
 plant=
 Rs. 20,00,000/-20,00,000/-

Cappital Charge rate = 11.8%

- Operating life = 200 gears

Energy Economics

HERAKLION 2019

Organic

Results & Discussion

Performance of the full-scale digester plant

	Rice straw	Dairy manure	Co-digestion
Specific methane production (mL CH ₄ /g VS added)	152	216	240
Electrical energy production(kWh/day)	224	319	354
Thermal energy production (kWh/day)	320	455	506
Electrical energy consumption (kWh/day)	25	11	18
Thermal energy consumption (kWh/day)	35	35	35
Net electrical energy production (kWh/day)	199	308	336
Net thermal energy production (kWh/day)	285	420	471

Energy Consumption

Substrate	Shredding (kWh/day)	Pumping and discharging of feed and digestate (kWh/day)	Conveyance (kWh/day)	Thermal energy to raise the temperatur e to 5 ⁰ C (kWh/day)	Thermal energy against heat losses (kWh/day)	Total electrical energy requirement (kWh/day)	Total Thermal energy requirement (kWh/day)
Rice straw	14	0.8	10	23	12	35	25
Dairy manure	0	0.8	10	23	12	35	11
Co-digestion	7	0.8	10	23	12	35	18

Net Energy production

Economy of the anaerobic

	Rice straw	Dairy manure	Co-digestion
Scenario II (Supplied to electric			
grid)			
Electrical Energy Revenues	4,50,337	6,97,004	7,60,368
(Rs/year) EER			
Net cash flow (EER-C _{O&M} -	2,50,337	4,97,004	5,60,368
Labour cost)			
Pay back period (Discount rate=	16.8 years	5.3 years	4.5 years
10 %)			
Scenario II (Supplied to electric			
grid)			
Electrical Energy Revenues	4,50,337	6,97,004	7,60,368
(Rs/year) EER			
Net cash flow (EER-C _{O&M} -	2,50,337	4,97,004	5,60,368
Labour cost)			
Pay back period (Discount rate=	16.8 years	5.3 years	4.5 years
10 %)			

- The net electrical and thermal energy production of co-digestion of substrates was higher than that of mono-digestion
- The high energy production from the co-digestion results in low pay back periods (4.3 years) whereas for mono-digestion of dairy manure results in longer periods (5.3 years)
- The results are encouraging the co-digestion of rice straw and dairy manure as well as for full-scale implementation for maximum benefit.

Thank you For your Attention

Floor Open for Discussion