

Gasification

Gasification for solid fuel upgrading

Gasification for CHP

(upgrade)

Systems for CHP

(combustion Vs gasification based)

	Combu	stion base systems	Gasification based CHP systems		
	ST	ORC	Stirling	ICE	BIGCC
Electrical	50 kW -	500 kW -	< 200	10 kW -	50-100
Power	250 MW	10 MW	kW	10 MW	MW
CHP electrical efficiency	0.10-0.25	0.13-0.18	0.10- 0.15	0.25-0.30	0.3-0.4
CHP overall efficiency	0.8-0.9	0.8-0.9	0.8-0.9	0.8-0.9	0.8-0.9
Power-to- heat ratio	0.10-0.35	0.20-0.25	0.15- 0.20	0.4-0.5	0.7-0.9
Field experienc e	extensive	extensive	limited	sufficient	very limited

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Systems for CHP

[J. Keel, EUBCE 2019]

Small scale gasification: EU facts & figures

[D. Bräkow, 9. "Internationale Anwenderkonferenz Biomassevergasung", 5. Dezember 2017 / Innsbruck]

Small scale gasification: technologies

Name	Country	Name	Country
Agnion Technologies GmbH	Germany	MEVA ENERGY AB	Sweden
AHT Pyrogas Vertriebs GmbH	Germany	Nexterra Systems Corp.	Canada
Andritz AG	Austria	Pyrox GmbH	Italy
Ankur Scientific Energy Technologies Pvt. Ltd.	India	Qalovis GmbH	Germany
BIO&WATT Gasification s.r.l.	Italy	Refgas Ltd	UK
Burkhardt GmbH	Germany	ReGaWatt GmbH	Germany
Cortus Energy	Sweden	Repotec GmbH	Austria
Ronda Engineering Srl (Ecogasgenerator)	Italy	Simam S.p.A.	Italy
ENTRADE ENERGY SERVICES LTD.	Germany	Spanner Re ² GmbH	Germany
EQTEC	Spain	Stadtwärke Rosenheim GmbH	Germany
ESPE Srl	Italy	Stirling DK	Denamrk
Froling srl	Italy	Syncraft Engineering GmbH	Austria
Future Green S.r.I.	Italy	Terruzzi Fercalx Spa	Italy
GLOCK Ökoenergie GmbH	Austria	Urbas Maschinenfabrik GmbH	Austria
GTS Syngas Srl / BR Energy Group AG	Italy / Switzerland	Varat - Enea	Italy
Hans Gräbner	Germany	Volter Oy	Finland
Hargassner GesmbH	Austria	Weiss A/S	Denamrk
Holzenergie Wegscheid GmbH	Germany	Xyloenergy GmbH	Germany
Kuntschar Energieerzeugung GmbH	Germany	Xylogas & EAF / Christof industries	Austria
KWS	Germany	XyloPower AG	Switzerland
Ligento green power GmbH	Germany	Xylowatt S.A.	Belgium
LiPRO Energy GmbH & Co. KG	Germany		

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Small scale gasification: technologies

Technology	Reactor	Biomass	Electric power [kW]	Thermal power [kW]
Burkhardt GmbH	Rising co-current	Pellet	180	270
Entrade Energiesysteme GmbH	Downdraft Fixed bed	Pellet A1	25	60
Future Green Srl (Wubi)	Downdraft Fixed bed	Woody chips	100	200
Hans Gräbner	Downdraft Fixed bed	Woody chips	30	60
Holzenergie Wegscheid GmbH	Downdraft Fixed bed	Woody chips and brickets	140	270
Kuntschar Energieerzeugung GmbH	Downdraft Fixed bed	Woody chips	150	260
Spanner Re ² GmbH	Downdraft Fixed bed	Woody chips	45	105
Stadtwärke Rosenheim	Double stage Fixed bed	Woody chips	50	110
Syncraft Engineering GmbH	Double stage Fixed bed	Woody chips	250	990
Urbas Maschinenfabrik GmbH	Downdraft Fixed bed	Woody chips	296	550
Xylogas & EAF	Downdraft Fixed bed	Woody chips	440	880

unibz

Small scale gasification: b.o.p.

AB a share s LAB

UnibzFreie Universität BozenLibera Università di BolzanoUniversità Liedia de Bulsan

Small scale gasification: performance

Small scale gasification: feedstock^{(critical issues).}

- ✓ <u>Very low moisture content:</u> < 10%
 - Vs direct combustion: 15-20%
 - need of a dryer
- ✓ <u>Constant characteristics</u>
 - homogeneous granulometry (e.g. chips, pellets)
 - constant typology (wood)
 - very few (no) finer presence

Biomass higher cost: approx. $130 - 150 \in$ / ton Vs direct combustion 70 - 80 € / ton

Small scale gasification: others

- ✓ <u>Feeding system</u>: (screw conveyors):
 - blockage/distortion for presence inhomogeneous or inert material
 - problems with woodchips geometry
- ✓ <u>Reactor and air nozzles</u>
 - high temperature can melt steel components
 - gasifier can reach higher T values than expected ones, because of a drier or larger particles
 - reactors must be periodically opened and cleaned to remove inert materials (rocks, metal pieces or molten ashes)

Small scale gasification: others

- ✓ Char management
 - char screw conveyors extract hot char from the gasifier, so they are subjected to deformation and breakage
 - char management and storage is often problematic because it is a very light material and easily transportable by air
- ✓ <u>Autonomy and control of the system</u>
 - low degree of automation, i.e. the software detects a problem and shut down the entire system; to restore the operation, there must be an operator who manages the problem manually and restarts the system.

Small scale gasification: gas cleanup

Pollutant	Example	Problems	Method
Particulate	Ash, char	Erosion	Filtration, scrubbing
Alkali	Na, K compounds	Hot corrosion	Cooling, condensation, filtration, adsorption
Nitrogen	Mainly NH_3 , HCN	NOx formation	Scrubbing, SCR
Tar	Aromatic compounds	Filters clogging, combustion problems, deposits, catalysts poisoning	Removal, condensation, thermal/catalytic cracking
Sulfur, Clorine	Mainly H ₂ S, HCl	Corrosion, gaseous emissions, catalysts poisoning	Scrubbing, with dolomite or lime, adsorption

Challenges for gasification

short term CHP upgrade

- fuel flexibility
- partial load operation
- char utilization
 - . filtering medium (ACS substute)
 - . catalyst

medium term CHP [] POLYGENERATION

- biofuels
- hydrogen
- SNG
 - . PtG (Power2gas / CO₂ capture)
 - . integration with other renewables

CHP upgrade: use of char (tar cracking)

Cordioli et al., EUBCE (2019)

Plant type	Dual stage gasifie	, Ash	Ash composition Mass fraction		
Feedstock	Wood chips	Ma			
Proximate and	_	[%]			
[wt ^e	% _{dn/}]	Ca	17.47		
Ach	27.2	Mg	2.18		
	78 0	Fe	1.12		
Ц	70.5	P	0.84		
N	0.0	Mn	0.56		
C C	0.2	Na	0.40		
	0.3		0.38		
	20.0	S S	0.37		
S_{BET} [IIF/Q]		Cr	0.30		
Pore volume [cmP/g	0.3	Ba	0.22		

	Empty-rea	actor tests	Tests with char-bed		
	900 °C	1000 °C	900 °C	1000 °C	
Toluene removal efficiency [%]	39.9	97.3	60.3	99.0	

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

CHP upgrade: use of char (adsorption)

Marchelli et al. (2019) Benedetti et al. (2019)

[D. Chiaramonti, 2011]

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Towards advanced biofuels: polygeneration

Renewable Energy Directive II (RED II)

Renewable transport fuels target: 14% (3.5% advanced b.)

SET plan & Action 8 Implementation plan

Gasification is a key technology in 3 (of 7) value chains

required: efficiency improvement, 30%, GHG savings, 60%

cost reduction, to 50 (2020) - 35

(2 Strategic Research and Innovation Agenda (ETIp, EERA Bioenergy)

Major role for gasification value chains in agreement with SET pl.

unihz

Polygeneration

Today (almost yesterday)

Tomorrow (almost today)

Sabatier reaction

 $CO_2 + 4H_2 \Leftrightarrow CH_4 + 2H_2O \Delta H = -164.9 \text{ kJ/mol}$

*Saric et al., Journal of CO*₂ *Utilization, 20 (2017) 81-90*

M. Bailera et al. Renewable and Sustainable Energy Reviews 69 (2017) 292-312

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

ion

Power-to-gas (PtG) and gasification

*Saric et al., Journal of CO*₂ *Utilization, 20 (2017) 81-90* Menin et al. (2019)

ation

Power-to-gas (PtG) and gasification

omorrow ("internal" PtG): low/high electricity prices

R.Ø. Gadsbøll et al., Energy 158 (2018) 495-503 Rasmus Ø. Gadsbøll, "Biomass Gasification Polygeneration", PhD Thesis,

DTU

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Ref: liquid biofues

Plant	P/D/C	year	Feedstock capacity	Product	By-product	Hours in operation
Bioliq, Karlsruhe, Germany Pyrolysis Gasification Synthesis	Ρ	2010 2013 2014	0.5 tonnes/h 1 tonnes/h 700 Nm ³ /h	0.45 tonnes/h 1,700 Nm ³ /h 0.2 tonnes/h		(December 2017) 630 900 160
Chemrec gasifier, Piteå, Sweden	Р	2005	3 MW (20 tonnes/d dry BL)	1.8 MW		>27,000 (- 2016)
Gasifier + BioDME, Piteå, Sweden	Р	2011		4 tonnes/d DME		~11,000 (- 2016)
GTI/Carbona/HTAS, Chicago, USA	D	2012	19.2 tonnes/d	3 tonnes/d gasoline		3,000 (- 2014)
Enerkem, Westbury, Canada	D	2009	48 tonnes/d (db)	11 tonnes/d ethanol		12,800
Enerkem, Edmonton, Canada	С	2015	300 tonnes/d	88 tonnes/d ethanol		Accumulated over 5,000 hours Presently in EtOH production ramp-up phase
Enerkem, Varennes, Canada	С	2021	350 tonnes/d (dry)	320 tonnes/d methanol		Project in development
Sunshien Kaidi NEG, Wuhan, China	Ρ	2013				
Sunshine Kaidi NEG, Ajos, Kemi, Finland	D/C	2019	~800 MW	500 tonnes/d FT diesel 167 tonnes/d bionaphta	-	Project in development
BioTfuel, Dunkerque, France	D	2018	3 tonnes/h (15 MW)	A small FT unit for validation tests	Steam/power prod not installed	Commissioning and start-up completed
Fulcrum Sierra Biofuels, Tahoe, ND, USA	С	2020	160,000 tonnes/y RDF	40,000 m ³ FT crude	-	-
Red Rock Biofuels, Lakeview, OR, USA	С	2020	127,000 tonnes/y (dry wood)	58,000 m ³ FT fuel Diesel 40%, Kerosene 40%, Naphta 20%		

Adapted from: ART Fuels Forum study "Continuing the work of the sub group on advanced biofuels for the RED II market deployment of advanced biofuels", Eds. I. Landälvet al., 28

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Ref: SNG

Plant	Type P/D/C	Start-up year	Feedstock capacity	Product	By-product	Hours in operation
Güssing, Austria	С	2002	8-10 MW	2.0 MW _e 4.5 MW _{th}		>80,000
GoBiGas, Göteborg, Sweden	D	2013	3 MW (20 tonnes dry BL per day)	20 MW SNG	6 MW district heat	Gasifier 12,000 h Methanation 70 GWh produced
Gogreengas, Swindon, UK	Р	2016	0.4 tonnes/d			n/a
Gogreengas, Swindon, UK	D	2019-202?	10,000 tonnes/y	4 MW 22 GWh		Plant in construction
GAYA, Saint- Fons, France	Ρ	2018		400 kW SNG		Commissioning completed, 2019 full test programme
SCW systems, Alkmaar, NL	D	2018	2 MW	SNG		Full operation scheduled for 2019
Ambigo, Alkmaar, NL	D	2019	4 MW demolition wood	2.8 MW SNG		Project in development

Adapted from: ART Fuels Forum study "Continuing the work of the sub group on advanced biofuels for the RED II market deployment of advanced biofuels", Eds. I. Landälvet al., 28 December 2018.

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Remarks: main directions for gasification

- Process simplification and intensification
- Increasing fuel flexibility (use of low-cost feedstock)
- Co-production of fuels/chemicals/materials (polygeneration)
- Combining thermochemical and biochemical processing
- Optimization of resource efficiency (wind, solar, hydro)

Research areas

Equipments -

Staff