WESTERN SYDNEY
UNIVERSITY

CO, Concrete

Professor Vivian Tam
Associate Dean (International)
School of Computing, Engineering and

Research Interest Sustainable construction Green buildings Mifecycle analyses, recycled concrete

Editor

International Journal of Construction Management, Taylor and Francis Group

Construction and Building Materials, Elsevier, Impact factor of 3.485

1 of 184 College of Experts employed by the Australian Research Council (ARC), Australian Government

Competitive research funding: Awarded 36 research grants (totalled AU\$2.5 million), including two ARC Discovery Project, Life cycle analysis for green building implementation.

Research outcomes: 2 books, 19 book chapters, 227 refereed journal articles and 121 refereed conference papers.

Research impacts: Hirsch Index of 40 (Scopus), 52 (Google Scholar), i10 index of 154 (Google Scholar), a total of 4,714 citations

2 V

Why Recycled Concrete cannot currently be used for[™] Structural Applications?

- Weak points such as old cement paste attached to old virgin aggregate;
- Possible pre-cracked aggregate;
- Frail interfacial transition zone;
- Poor grading;
- High porosity;
- Low density; and
- High water absorption.

Keys for using Recycled Concrete for Structural Applications

Suitable Physical and Mechanical Properties

 Recycled concrete must match or surpass qualities of virgin concrete.

Real world practicality

 Concrete can be delivered in a timely and achievable manner similar to virgin concrete. Recourses required in these methods must be readily available.

Cost efficiency

CO₂ Concrete

CO₂ Concrete

This benefits the environment in two ways:

- Using carbon dioxide which would otherwise be released into the atmosphere, worsening global warming and climate change issues; and

- Reducing landfill space by turning construction waste into construction material, i.e. recycled concrete whose performance is similar to virgin concrete.

This process can bring direct benefits to concrete batching plants as

Slump

Modulus of Elasticity

Flexural Strength

Tensile Strength

Shrinkage

Permeability

Phenolphth indicator te

1-quartz; 2-CaCO₃; 3-Ca(OH)₂; 4-AFt; 5-mica

X-ray powder diffracti

Differential scanning calorimetry

CO₂ enters the old mortar pores and makes it stronger

Moving Forward

- Commercialisation?

- Impact to the Environment / Economy /
Society

Fundamental

research

Commenced

Project leader,
Top 8 research teams
selected by
Innovyz Institute, Pty. Ltd.
for a Waste and Recycling
Technologies Program
under 1.5 million support by
Green Industries SA

Founded EcoBond Pty. Ltd.

EcoBond Pitching World's first CO2 Concrete: Biosecurity Platform

Upscale CO2 Concrete: 4 3m x 3m slabs

Term 1

Term 2

Term 3

Time

Mar.15

Mar.17

Dec. 17

Jan. 18

Mar. 18

Apr. 18

Mar. 19

9-month intensive training on commecialisation and research development skills

Term 1 is validating and expanding technologies;

Term 2 is defining commercialization paths;

Term 3 is for investment strategies and capital raising activities.

PRODUCING CONCRETE USING CARBON DIO

We have invented CO_2 Concrete, which is a new process for producing strength recycled concrete. We inject carbon dioxide into recycled agging its bonding, and thus performance of recycled concrete.

This benefits the environment in two ways:

- Using carbon dioxide which would otherwise be released into worsening global warming and climate change issues; and
- Reducing landfill space by turning construction waste into construction recycled concrete whose performance is similar to virgin concrete.

We are looking for Investors, Partners and Network connectors in the s this new material.

You can find more information via http://www.ecobond.com.au.

Please follow us via our Facebook and Linkedin for all new updates. https://www.facebook.com/EcoBond-182364185894004/?ref=bookmarks https://www.linkedin.com/company/18578057/admin/updates/

Contact:

Dr. Khoa Le and Prof. Vivian Tam, Inventors of CO₂ Concrete, Ecinfo@ecobond.com.au

Special thanks to our sponsors

World's First CO2 Concrete

We have cast two CO2 Concrete Biosecurity Platforms for Hawkesbury Campus, Ap

Western Sydney University Hawksbury Farm has been known for its state-of agricultural research. We have now become a part of this great culture by contribution CO_2 Concrete biosecurity platforms, which are employed for boot cleaning, minimis and diseases.

We are looking for Investors, Partners and Network connectors in the sector to this new material.

You can find more information via http://www.ecobond.com.au.

Please follow us via our Facebook and Linkedin for all new updates.

https://www.facebook.com/EcoBond-182364185894004/?ref=bookmarks
https://www.linkedin.com/company/18578057/admin/updates/

Contact:

Dr. Khoa Le and Prof. Vivian Tam, Inventors of CO₂ Concrete, Ecobond P info@ecobond.com.au

Special thanks to our sponsors

UPSCALED - CO2 Concrete Slabs

We have upscaled our CO_2 Concrete production. With the success of our biosecurity platforms at Hawbesbury Farm, Western Sydney University, we made four 3m x 3m concrete slabs with our CO_2 Concrete. The slabs were cast in March 2019 using our 2 innovative mix designs. The slabs are employed to support gross animal weight (about 1 ton each) for their troughs (drinking stations).

We are looking for Investors, Partners and Network connectors in the sector to publicise this new material.

You can find more information via http://www.ecobond.com.au.

Please follow us via our Facebook and Linkedin for all new updates. https://www.facebook.com/EcoBond-182364185894004/?ref=bookmarkshttps://www.linkedin.com/company/18578057/admin/updates/

Contact:

Prof. Vivian Tam and A/Prof. Khoa Le, Inventors of CO₂ Concrete, Ecobond Pty. Ltd., info@ecobond.com.au

Special thanks to our sponsors

Green Industries SA and Innovyz Institute

rapid commercialisation of innovative ideas

Professor Vivian WY Tam

vivian@ecobond.com.au

www.ecobond.com.au

SPECIAL THANKS TO OUR SPONSORS

© 2018 by Ecobond I Proudly created in partership with Innovyz Pty Ltd I Webstite Terms of Use I We respect your privacy - Review our Privacy Policy for more information.

Professor Vivian WY Tam
Associate Dean (International)
School of Computing, Engineering and
Mathematics