Recovery of Lithium and Cobalt from spent Lithium-ion batteries and dechlorination of chlorinated polyvinyl chloride (CPVC) in hydrothermal treatment

T. Nshizirungu, D. Shin, Y.T. Jo, J.H. Park *

Department of Environment and Energy Engineering, Chonnam National University, Gwangju 61186, Republic of Korea

Keywords: spent Lithium-ion batteries, hydrothermal treatment, waste plastic chlorinated polyvinyl chloride, metal recovery

Presenting author email: nshizirungu2013@gmail.com

The energy growth demand for consumer electronics and electric vehicles (EV), they increased the Lithium-ion battery consummation (Liu, 2016). Additionally, this can be automatically increasing the production of metal which are containing the hazardous waste (Itoh, 2006). The absence of adequate recycling technologies of Lithium–ion batteries (LIBs), may cause many problem like environment pollution and loss of valuable metals (Armand, 2008). However, recovery and recycling of main components from the spent LIBs especially the Cathode materials can provide us a beneficial way to prevent our environmental pollution and valuable elements from cathode and anode materials.

Figure 1. Schematic diagram for Co and Li recovery from spent Lithium-ion batteries

Generally, this work was focused on an effective and environmental friendly recovery of valuable metals such as Lithium (Li) and Cobalt (Co) from the spent Lithium-ion batteries and the same time dechlorination of waste plastic.
chlorinated polyvinyl chloride (CPVC) in hydrothermal subcritical water process as shown in fig 1. Waste plastic Chlorinated polyvinyl chloride was grinded and sieved to obtain fine CPVC powder. Pre-treatment stage, spent lithium-ion batteries was full discharged in 20(wt%) NaCl solution and dismantling. After Al foil removed from cathode electrodes by using 50ml of N-methyl-2- pyrrolidone (NMP) solvent. Then the LiCoO$_2$ surly were filtrated and dried. LiCoO$_2$ powder was measured by inductively coupled plasma optical emission spectrometer (ICP-OES) after digestion with aquaregia. The results indicated that Li was accounted for 4.99% and 54.90% for Co as shown from table 1.

Table 1. The element content of LiCoO$_2$ powder from ICP-OES results

<table>
<thead>
<tr>
<th>Symbol</th>
<th>elements</th>
<th>wt% content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>Lithium</td>
<td>4.99</td>
</tr>
<tr>
<td>Co</td>
<td>Cobalt</td>
<td>54.90</td>
</tr>
</tbody>
</table>

Co-treatment stage, LiCoO$_2$ powder and waste plastic CPVC will be co-treated in temperature range of 200°C to 450°C by subcritical water oxidation, in which CPVC will be used as a hydrochloride acid (HCl) source to promote metal leaching. The expected results from ICP-OES will show us that more than 96% Cobalt and nearly 97% Lithium will be recovered under the optimum conditions of 350°C, CPVC/LiCoO$_2$ ratio 3:1 and time 40min respectively. As conclusion, the process includes 2 main steps: (1) pre-treatment; from Li-ion battery full discharge until LiCoO$_2$ powder formed. (2) Co-treatment; from leaching process until recovery of Li and Co in form of Li$_2$CO$_3$ and Co(OH)$_3$. This innovative work of hydrothermal subcritical water technology is sufficient, environmental friendly and appropriate for Co and Li recovery from spent lithium-ion batteries.

Acknowledgements

This research was financially supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) _ Energy Technology Development project.

References

