Three-stage anaerobic co-digestion of food waste and waste activated sludge

L. Zhang¹, K.-C. Loh¹, J. Zhang²

¹Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore

²NUS Environmental Research Institute, National University of Singapore, 138602, Singapore

Keywords: Three-stage anaerobic digester, functional segregation, bench-scale application, microbial

communities

Presenting author email: zhangle@u.nus.edu

Introduction

Food waste (FW) and waste activated sludge (WAS) are critical global issues currently (Voelklein *et al.* 2017). Anaerobic digestion (AD) is universally acknowledged as an effective method for organic waste treatment and renewable energy generation (Angelidaki *et al.* 2018). To combine the benefits of high-solids AD and wet AD to improve digester performance and methane production, a three-stage anaerobic digester was developed in this study. The three-stage digester successfully integrated high-solids hydrolysis (stage 1), acidification (stage 2) and wet methanogenesis (stage 3) into one digester. Hitherto, no research has been conducted to operate co-digestion of FW and WAS using a three-stage AD digester. Therefore, the objectives of the present study were (a) to explore the potential and feasibility of the three-stage digester (20 L) for anaerobic co-digestion of FW and WAS, and (b) to further investigate the microbial dynamics in the three-stage anaerobic system for co-digestion of FW and WAS.

Bench-scale three-stage anaerobic co-digestion system and operation

The 20 L bench-scale three-stage anaerobic co-digestion (TSAco-D) system (Fig. 1) was operated in a semi-continuous mode at 35°C for 119 days.

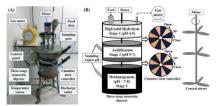


Fig. 1 Three-stage anaerobic co-digestion system: (A) photograph, (B) schematic diagram.

Performance of bench-scale three-stage anaerobic co-digestion

Fig. 2A shows the reactor performance during the bench-scale three-stage anaerobic co-digestion.

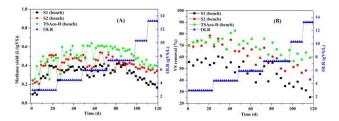
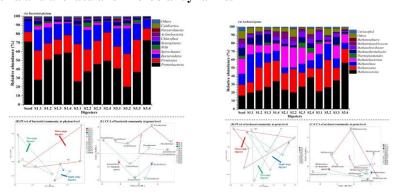



Fig. 2 Methane yields (A) and VS removal efficiency (B) of the bench-scale three-stage co-digestion.

From Fig. 2A, at the same OLR of 5.89-7.36 gVS/L (day 49 to day 97), the average methane yield of TSAco-D (bench) was about 1.62 and 1.31 times higher than those in S1 and S2, respectively. This result indicated that three-stage AD performed more effectively and had a better bearing capacity for a high OLR than one- and two-stage digesters. However, with application of a higher OLR (10.3-13.25 gVS/L) from the 99th day, performance of the

digesters decreased considerably, which indicated that the maximum available OLR was between 6 and 7 g VS·L¹. During the whole AD process, the average methane yield of TSAco-D (bench) was 0.496 L/(gVS), which was 51.7% and 13.4% higher than that of S1 (bench) and S2 (bench), respectively. In addition, the VS removal efficiency (Fig. 2B) in the bench-scale TSAco-D was 69.3%, higher than that of S2 (62.4%) and S1 (47.0%).

Predominant bacteria and archaea and microbial dynamics

Fig. 3 (left) (A) Species taxonomy and (B) PCoA of bacterial communities. (C) CCA of bacterial community. **Fig. 4** (right) (A) Species taxonomy, (B) PCoA and (C) CCA of methanogenic archaeal communities. S1.1 refers to the one-stage digester with an OLR of 2.94 gVS/L; S2.2 refers to the two-stage digester with an OLR of 5.89 gVS/L; S3.3 refers to the three-stage digester with an OLR of 7.36 gVS/L; S3.4 refers to the three-stage digester with an OLR of 13.25 gVS/L. And so on in a similar fashion.

Bacterial phyla *Proteobacteria, Firmicutes and Bacteroidetes* dominated in one-, two- and three-stage digester while genera *Pseudomonas, Tissierella*, and *Petrimonas* were selectively enriched in the three-stage digester due to functional segregation. Taxonomic analysis identified 8 dominant methanogen genera, of which *Methanosarcina, Methanosaeta, Methanobacterium* and *Methanolinea* collectively accounted for 80%. With increasing OLR and digester stage number, the dominant methanogenic pathway shifted from hydrogenotrophic pattern to acetoclastic pattern and reached a final synergy of these two. *Methanosarcina* was enriched by 1.5-1.7 times in the three-stage digester, contributed to the enhanced methane production.

Conclusions: Anaerobic co-digestion of WAS and FW was investigated in one-, two- and three-stage digesters at mesophilic condition within a wide range of OLRs. The feasibility of the three-stage digester scenario was validated in a bench-scale operation. The maximum available OLR for the long-term operation of the three-stage digester was proposed as 6-7 gVS/L. Through digester functional segregation, beneficial bacterial species (e.g. *Pseudomonas*) and methanogens species (e.g. *Methanosarcina*) were selectively enriched by 1.5-2.8 times, which contributed to the enhanced hydrolysis degree and acidification degree, the shortened start-up period, the increased VS removal, and the enhanced methane production in the three-stage digester.

Acknowledgments: This research project was funded by the National Research Foundation, Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) Programme.

References

Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., Kougias, P.G. (2018), Biogas upgrading and utilization: Current status and perspectives. *Biotechnol. Adv.*, **36**, 452-466.

Voelklein, M.A., O'Shea, R., Jacob, A., Murphy, J.D. (2017), Role of trace elements in single and two-stage digestion of food waste at high organic loading rates. *Energy*, **121**, 185-192.