Bioreactor Landfilling of Oil Sludge

Isam Janajreh*, Ahmed Alshehhi, Thomas Arink
Department of Mechanical Engineering
Masdar Institute of Science and Technology
Abu Dhabi, United Arab Emirates
ijanajreh@masdar.ac.ae

Abstract--Waste to Energy can be pursued biologically, chemically, or thermally, leading to the production of chemicals of high caloric value or sensible heat. The petroleum industry has been generating an alarming amount of solid waste in the form of oily sludge. It is a hazardous of complex emulsion of various petroleum hydrocarbons (PHCs), solid particles, water and heavy metals. Recovery of PHCs via extraction and thermochemical has been widely investigated; however biological treatment for recovery and safe disposal is less fortunate. This work focuses on the anaerobic PHC decomposition in a well-controlled landfill bioreactor for the generation of landfill gas (LFG: CO2 and CH4). It is found that on the basis of 100kg of PHC, nearly 4.5 kg and 11.8 kg of CH4 and CO2 are generated. This is fairly equal to what would be generated from Municipal waste (MSW). Practically, co-digestion with MSW can enhance the biodegradation and the yield, contrary to WWTP sludge which only enhances the biodegradation.

Keywords: Bioreactor; Landfill-gas; Sludge; Anaerobic-digestion

I. INTRODUCTION

Ranking 7th internationally in the total proven oil reserves and the 10th highest producers of crude oil and natural gas [1], dealing with petro chemical waste in UAE is vitally important. For example. Production of 200–500 barrels of petrochemicals may generate as much as 10,000 m³ of hazardous oily sludge [3-4]. The oily sludge is described as remnants obtained from the water, oil, fat and solids, organic compounds and minerals, with alkanes heading the list [5]. Different treatment methods, such as incineration, gasification, pyrolysis, and biodegradation, [6] have been explored to stabilize oily sludge waste. In Abu Dhabi, BeAAT, a specialized treatment facility for petrochemical waste, established ways to safely receive, manage, treat and dispose the hazardous industrial petrochemical waste. BeAAT implements the following waste treatment: Solidification, Centrifugation, Thermal Desorption, Incineration, Physical/Chemical Treatment, Mercury Distillation, Drum handling and cleaning and dry-dump landfilling at an annual capacity rate of 25,000 tones. Their method of treatment focuses more on the thermochemical and stabilizing of metals in landfilling, but no bioremediation method. In the present work, anaerobic digestion of oily sludge is proposed and assessed on the basis of its gas production and comparison with MSW and co-digestion, with waste water treatment sludge as a source of bacterial nutrition.

II. OPERATION OF BIOREACTOR LANDFILLS

The operations of a bioreactor landfill are comparable to modern municipal waste water treatment plants in pursuing a controlled decomposition of organic waste, but also differ from classical dry and slow landfill with moist and faster biodegradation. Fig. 2 summarizes the biodegradation processes and shows the elements of the anaerobic bioreactor which consists of bottom geomembrane (LDPE), a gravel layer a leachate conveyance system, gas collection wells, hosting cells, and capping dirt and clay. It is also instrumented with sampling ports for gas, leachate, sample dirt or compost etc. Rain or brackish water is trickled to keep the waste within the stipulated moisture content to enhance the hydrolysis and subsequent steps of decomposition. Bioreactor landfill has the potential to fully degrade waste in ten years instead of many decades, as in the case of classical dry tomb landfill. It generates faster Landfill gas (LFG) for fuel utilization.

Fig. 1: Bioreactor process & schematic of it components [7]

The reactor observes 1st a quick depletion of entrapped air due to loose waste/soil compaction and the needed soil-LDPE permeability. This step activates the aerobic microorganism’s biodegradation and production of CO2, H2O, heat and biomass [8]. A shift to anaerobic will take a short time following a declination in aerobic microorganism activities. This new activity involves four sequenced biochemical reactions that are associated with different colonies of anaerobic microorganisms leading to the formation of landfill gas and intermediate
organic acids. These are hydrolysis, acidogenesis, acetogenesis and methanogenesis. The hydrolysis is vital for the biodegradation, in which the organic compounds are solubilized by the extracellular enzymes into smaller sized organic compounds that would diffuse through the microorganism’s membrane cell [9]. Shorter molecules of sugar, alcohol, fatty and amino acids results from the solubilization of carbohydrates, fats and proteins according to the following reaction [10]:

\[(\text{C}_x\text{H}_y\text{O}_z)n + n \text{ H}_2\text{O} \rightarrow n \text{ CH}_2\text{O}_x\]

(1)

Acidogenesis oxidized sugar and fatty acids into other organic acids, which latter tended to crack into acetic acid according to these reactions [9]:

\[\text{C}_2\text{H}_5\text{O}_2\rightarrow \text{CH}_3(\text{CH}_2)_2\text{COOH} + 2\text{H}_2 + 2 \text{ CO}_2\]

(2)

\[\text{C}_2\text{H}_4\text{O}_2 + 2\text{H}_2 \rightarrow 2\text{ CH}_3\text{COOH} + 2\text{H}_2\text{O}\]

(3)

\[\text{C}_2\text{H}_4\text{O}_2 + 2 \text{ H}_2\text{O} \rightarrow 2\text{CH}_3\text{COOH} + 4\text{H}_2 + \text{ CO}_2\]

(4)

Acetic acid formation signify the onset of acetogenesis step in which propionic and butyric acids are converted into acetic acid according to the following reactions [10]:

\[\text{CH}_3(\text{CH}_2)_2\text{COOH} + 2\text{H}_2\text{O} \rightarrow 2\text{ CH}_3\text{COOH} + 2 \text{ H}_2\]

(5)

\[\text{CH}_3\text{CHOH} + 2\text{H}_2 + \text{CH}_3\text{COOH} + 3 \text{ H}_2 + \text{ CO}_2\]

(6)

The final stage, methanogenesis, involves the formation of methane either from CO2 reduction with H2 or acetate cracking the acetate lead to the methanogenesis following these elementary reactions [9]:

\[\text{CH}_3\text{COOH} \rightarrow \text{CH}_4 + \text{ CO}_2\]

(7)

\[4\text{H}_2 + \text{ CO}_2 \rightarrow \text{CH}_4 + 2 \text{ H}_2\text{O}\]

(8)

III. MATERIALS AND ANALYSIS

Numerous samples of the PHC sludge from BeAAAT were obtained and subjected to homogenization. This is followed by TGA proximate and Flash200 elemental analyses. Two other samples of MSW and waste water treatment sludge (WWTS) were obtained and subjected to the same process. Their unit molecular formulas are computed as \(\text{CH}_2\text{H}_{264}\text{O}_{561}\text{N}_{211}\) for PHC, \(\text{CH}_{5.8}\text{O}_{9.9}\text{N}_{0.01}\) for MSW, and \(\text{CH}_{2.71}\text{O}_{5.66}\text{N}_{0.061}\) for sludge. Furthermore, the organic fraction, moisture contents, the fraction of volatile solid of the organic solid, biodegradable volatile solid fraction and its share to be converted into biogas are estimated following the work of Kreith and Goswami [11] and summarized in Table I.

<table>
<thead>
<tr>
<th>TABLE I. SUMMARY OF THE PROXIMATE ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Fraction (%)</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Weight of organic material in the feedstock</td>
</tr>
<tr>
<td>Moisture content</td>
</tr>
<tr>
<td>VS of total organic solids</td>
</tr>
<tr>
<td>BVS of the VS</td>
</tr>
<tr>
<td>Biodegradable VS to be converted to biogas</td>
</tr>
</tbody>
</table>

The estimated theoretical yield follows the biodegradation stoichiometric eq. (9). Thus, given the feedstock unit formula in the form of \(\text{C}_x\text{H}_y\text{O}_z\text{N}_p\), which is inferred from the proximate and ultimate analysis, provides the basis of theoretical estimation of the gas volume that could be produced from oily sludge. The anticipated landfill gas values, both in unit mass and volume, are summarized in Table II. It should be noted that a higher volume fraction of CH4 is typically produced than CO2 which can reach twice the volume. These values also are in the vicinity to 10% by weight to dry BVS. Also, because the PHC is not as rich of a nutrition compared to the WWTP sludge or MSW, co-digestion with either can promote its biodegradation to the theoretical value.

\[\text{C}_2\text{H}_4\text{O}_2\text{N}_p + (4\text{a}-2\text{c} -3\text{d}/4) \text{ H}_2\text{O} \rightarrow (4\text{a}+2\text{c} -3\text{d}/8) \text{ CH}_4 + 4\text{a} -2\text{c} -3\text{d}/8 \text{ CO}_2 + \text{ dNH}_3\]

(9)

<table>
<thead>
<tr>
<th>TABLE II. SUMMARY OF THE LANDFILL GAS GENERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
</tr>
<tr>
<td>Weight of the methane (kg)</td>
</tr>
<tr>
<td>Weight of carbon dioxide (kg)</td>
</tr>
<tr>
<td>Volume of the methane (m³)</td>
</tr>
<tr>
<td>Volume of carbon dioxide (m³)</td>
</tr>
<tr>
<td>Percentage of the methane %</td>
</tr>
<tr>
<td>Percentage of carbon dioxide %</td>
</tr>
<tr>
<td>Total theoretical amount of gas unit weight</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

Estimation of landfill gas due to the anaerobic digestion of PHC waste is evaluated, which otherwise is destined to the landfill or thermochemical treatment pathways. On the basis of 100kg of PHC, nearly 4.5 kg of CH4 and 11.8 kg of CO2 are generated. This is roughly what would be generated from MSW. Due to the low nutritional value of PHC, co-digestion is required for practical reasons. The co-digestion of PHC with MSW would enhance the biodegradation and the yield, contrary to the WWTP sludge which only enhances the biodegradation.

REFERENCES