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Prediction of organic matter removal from pulp and paper mill wastewater using 
artificial neural network 

Abstract: The main purpose was to evaluate the application of Principal Component Analysis (PCA) as a 
preprocessing technique of the input data of a Multilayer Perceptron Model (MLP). The objective of the 
model was the prediction of organic matter removal from pulp and paper mill wastewater. Methods: The 
original data base covered a period of 1 427 consecutive days and contains the most frequently measured 
parameters. Two models (M1 and M2) were constructed without the application of PCA technique, and 
three (M3, M4 and M5) applying PCA to select principal components, discard original variables and 
exclude possible outliers. The data from each set were randomized and divided into three sets (training, 
validation and testing) each one containing 70%, 20% and 10%, respectively. The training algorithm was 
the Levenberg-Marquardt which is an adaptation of the back-propagation algorithm. The learning rate 
was 0.05 and the evaluation criteria used were the mean square error (RMSE) and the linear correlation 
coefficient (R2). Results: PCA allowed discarding original variable and improving neural network 
performance without any loss of information. It was observed a marked difference in the predictive 
performance when the organic matter load was used as input (kg.day-¹). The model M4, which was built 
discarding two variables (pH and EC), proved to be the most suitable and the simplest model obtained. 
Conclusions: the choice of the best neural network model should not be done indiscriminately and 
carelessly. It is necessary to use various statistical parameters and perform comparison of models with 
different sizes and structures. 
Keywords: artificial neural network, organic matter, principal component analysis, pulp and paper mill 
wastewater. 
 
1. INTRODUCTION 
Safer operation and control of industrial processes can be achieved by developing a modeling tool for 
predicting the plant performance, based on past observations of certain key product quality parameters. 
Performance assessment and monitoring of biological wastewater treatment process are usually made by 
collecting samples, and conducting physical and chemical analysis with daily attendance, what leads to an 
increase on the overall costs of the process. Besides, the numerical modeling to quantify the efficiency of 
contaminants removal, especially organic matter, is based on models whose kinetic constants are obtained 
often by studies with isolated cultures of microorganisms fed with specific substrate under laboratory 
scale. Microbial diversity and variability of organic substrate supplied to the microorganisms, associated 
with the variation of operating conditions in industrial process may limit the use of specific kinetic 
models for predicting performance of wastewater treatment systems. Therefore, since it is provided with a 
series of monitoring data, the application of predictive statistical tools is an attractive alternative that can 
provide information and correlations between industrial processes, wastewater characteristics and 
efficiencies of the wastewater treatment processes.  
Nevertheless, some processes, such as industrial wastewater treatment, exhibit non-linear behaviors 
which are difficult to describe by linear mathematical models. However, the use of predictive models 
based on Artificial Neural Networks (ANN) to improve the operational control of wastewater treatment 
plants have been suggested in literature, and Multilayer Perceptron (MLP) has been successfully used [1-
5]. Grieu et al. [6] presented a prediction procedure based on a MLP network to obtain influent and 
effluent organic matter concentrations. These authors indicated that neural modeling can be a useful tool 
to minimize operation costs and provide stability to the treatment process. 
ANN normally relies on representative historical data of the process. Therefore, data preparation is an 
essential step for enhanced performance of predictive models. This task requires a careful analysis of the 
data, in order to define which variables best represent the system. Frequently, researchers face themselves 
with a large set of independent variables for possible inclusion in a multivariate analysis. In most cases, 
the inclusion of all variables in modeling is unnecessary and would be a serious obstacle to the correct 
interpretation of the data. 
PCA is a multivariate statistical technique that reduces a complex system of correlations to a smaller 
number of dimensions. The main purpose is to reduce the dimensionality of a data set, consisting of a 
large number of interrelated variables, while retaining as much as possible of the variation, present in the 
data set [7-8]. Consider a data matrix X with n rows (observations) and p columns (variables). PCs are 
obtained by the diagonalization of the covariance matrix XTX, where XT is a transposed matrix of X. The 
elements of the eigenvectors, called loadings (weights) in PCA terminology, represent the cosine 
directors, in other words, they express a contribution of each original axis in the new axis, the so called 
principal components (PCs). The eigenvalues represent the amount of variance described by the original 
eigenvectors. 



There are several methods for selecting variables by PCA [9-12]. Jolliffe [13] proposed a method, 
designated B4, to discard original variables based on the loading vectors of the first PCs. In fact, the 
author tested five methods: a multiple correlation method, two principal component methods and two 
clustering methods. The methods were compared and all showed to be satisfactory for real, as well as 
artificial data, although none is shown to be significantly superior to the others. The principal component 
methods were more successful at producing best subsets. Thus, as PCA is useful for reduction of the 
variables and also to exclude outliers, this was the method chosen to improve network performance. Other 
research that has successfully applied PCA together with ANN is described by several studies [14-17].  
The purpose of this work was to evaluate the application of PCA, as a preprocessing technique of the 
input data to select variables and PCs, and also to identify outliers, in order to obtain a prediction of 
organic matter removal from pulp and paper mill wastewater by a MLP model. 
  
2. METHODS 
 
2.1  Process description  
The wastewater treatment system consists of two parallel tanks with mixing, and flocculation chambers to 
enhance particle flocculation, followed by an aerated lagoon system.  
 
2.2  Data collection for prediction model 
The original data base covered a period of 1 427 consecutive days, about 4-year daily record. In order to 
minimize loss of information due to exclusion of samples that contained high incidence of missing values 
(> 50%), the data sets contained only the most frequently measured variables: flow rate (Q), influent 
organic matter (CODin), pH value, color, temperature, electrical conductivity (EC), wastewater flow 
coming from the pulp production (Qpulp) and wastewater flow coming from the paper production (Qpaper). 
Biochemical oxygen demand (BOD) was not chosen as input variable because of the significant time of 
measurement, about five days, which made it impractical to build the model. Due to exclusion of sample 
that contains missing data, the exclusion of BOD and probable errors of measurement, the data set was 
reduced to 786 samples. Table 1 shows the basic statistical properties for the selected variables. 
  
Table 1: Basic statistical properties of the selected variables. 
Parameters Mean Standard 

deviation 
Minimum Maximum Missing 

data (%) 
Q (m³.day-1) 67 363.8 11 588.5 4 474 97 850 0 
CODin(mg O2.L-1) 561.5 104.2 136 925 6.2 
pH 7.5 1.2 1.0 12.5 3.7 
Color (unitsPt-Co)   464.4 123.6 41 1 317 3.6 
Temperature (°C) 45.5 3.1 28 50.5 32.6 
EC (µS.cm-1) 1 530.9 378.1 379 5 810 3.9 
Qpulp(ton.day-1) 886.1 155.2 0 1 112.1 7.9 
Qpaper(ton. day-1) 1 042.7 94.2 382.4 1 304.8 6.5 
CODout(mg O2.L-1) 315.5 2.0 105 865 5.8 
 
Five models were constructed to predict the content of organic matter in the effluent of the aerated lagoon 
(CODout).  Model 1 (M1) was constructed quantifying the organic matter present in the wastewater as 
concentration of COD (mg O2.L-1) while the organic load (CODload), calculated by the multiplication of 
the COD concentration and flow rate, was used in Models 2 to 5. PCA was applied to reduce the 
dimensionality of data set, in order to select PCs original variables and exclude possible outliers in 
Models 3 to 5. 
 
2.3  Artificial neural network structure 
The B4 method was used to discard original variables, based on the weight vectors of the first principal 
component. The procedure began by finding the original variable that had the highest absolute weight on 
the first PC. Then, this variable was placed in the selected set. The method continued by inspecting the 
weights of the original variables on the second PC. Once more, the variable with the highest absolute 
weight was selected and placed in the set (unless it was already selected; in which case, the variable with 
the next highest absolute weight must be selected). This procedure was repeated until the most-important 
PCs were checked (eingevalue > 0.7). 
Multilayer perceptron (MLP) was the artificial neural network used for the prediction of the amount of 
organic matter effluent of the aerated lagoon (CODout). The training algorithm was the Levenberg-
Marquardt, which is an adaptation of the backpropagation algorithm. This algorithm is normally used for 



ANN, with a little or moderate training set (up to several hundred weights) since it requires a large 
storage memory for execution. It has been proven to be fast, convergent and robust [1]. 
The neural network parameters can be changed to reach the suitable network architecture, aiming to find a 
model with a more satisfactory result. The network parameters that changed on the length of the training 
were: learning rate, number of hidden layers and number of neurons per each hidden layer. The data set 
were randomized and divided into three sets: training, validation and test. The transfer functions were log-
sigmoid and linear for the intermediate and output layer, respectively. 
The linear activation function for the output neuron was appropriate for continuous-variable targets. 
Sigmoidal activation functions for the input and hidden neurons were needed to introduce nonlinearity 
into the network. Without nonlinearity, hidden layers would not make the nets any more powerful than 
plain perceptrons (which do not have any hidden units, just input and output units). Sigmoidal activation 
functions are usually preferable to threshold activation functions [18].  
 
2.4  Evaluation of the ANN model performance 
The performance of each network model was evaluated by computing the mean square error (MSE), the 
linear correlation index (R2) and adjusted linear correlation index (adjusted R²). In contrast to R2, the 
adjusted R2 only increases if the additional model parameters significantly improve the regression results, 
to compensate the increase in regression degrees of freedom. Therefore, there is no similar statistical 
parameter to perform reliable comparative analyses of the predictive performances of ANN models than 
the adjusted R². The Minitab® and Matlab® were used to statistical analysis, PCA and ANN modeling, 
respectively. 
 
3. RESULTS AND DISCUSSION 
Table 2 shows the results of the variance and weights of the principal components. According to the 
criteria of the B4 method, the first five components should be preserved to build the model, since these 
PCs express 89.8% of the total preserved variance of the system. The most important variables were: flow 
rate (Q), CODload, Qpaper, color, Qpulp, and temperature, respectively. Since COD load = f(COD,Q) and Q 
present the same loading value, only CODload was maintained as an input variable for the modeling. We 
highlight that the select variables, by B4 method, were the same when using training, validation or test 
data sets. 
 
Table 2: Variance and weights of the principal components. 

Principal Components Variance Explained variance (%) Accumulated variance (%) 
PC1 2.7 33.8 33.8 
PC2 1.7 20.6 54.4 
PC3 1.3 15.7 70.1 
PC4 0.8 10.6 80.7 
PC5 0.7 9.0 89.7 
PC6 0.4 5.5 95.2 
PC7 0.4 4.8 100 
PC8 0 0 100 

Weights 
Principal  

Components Q CODload pH Color T EC Qpulp Qpaper  
PC1 -0.49 -0.49 0.27 -0.17 -0.28 0.38 -0.37 -0.24  
PC2 -0.42 -0.42 -0.35 -0.05 0.37 0.07 0.39 0.48  
PC3 0.06 0.06 0.53 0.58 0.32 0.49 0.16 0.10  
PC4 -0.11 -0.11 -0.26 0.70 -0.35 -0.22 -0.39 0.31  
PC5 -0.15 -0.15 -0.18 0.27 0.58 -0.29 -0.17 -0.64  

 
The best results were obtained when the ANNs were composed by only one hidden layer, the learning 
rate was equal to 0.05 and the division of the data to perform training sets, validation and testing were 
equal to 70%, 20% and 10%, respectively. 
Table 3 shows the results of the evaluation of the performance of each model. Considering the values of 
R² and R²adjusted, it can be noted that only M1 presented poor performance. A better performance was 
found when regarding models M2 to M5, once they were built considering the amount of influent organic 
matter expressed in load terms (kg.day-1) instead of concentration terms. The Model M1 was built 
considering the concentration of organic matter as COD and the flow rate. Therefore, the fluctuation of 
values from these parameters may have been the cause of M1’s poor performance. Considering the 
models M2 to M5, no significant differences were identified in the R2 values. The number of iterations 



varied from model to model; nevertheless this was not significant in this case, as it does not take more 
than 10 seconds to run each model. 
 
Table 3: Evaluation of the models to predict the CODout of  the aerated lagoon. 
 Models 
Comparative 
parameters 

M1 1 M2 2 M3 2 M4 2 M5 2 

Inputs 8 original 
variables 

8 original 
variables 

5 PCs 5 original 
variable 

8 original 
variables 

Training data 706 706 706 706 706 
Test data 80 80 80 80 80 
Number of 
hidden neurons 1 1 1 1 1 

Number of 
parameters 9 9 6 6 9 

Transfer function Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid 
Processing 
method 

Back-
propagation 

Back-
propagation 

Back-
propagation 

Back-
propagation 

Back-
propagation 

Number of 
iterations 11 103 18 93 103 

MSE test 2.3E-03 4.59E-08 1.9E-05 2.9E-08 4.0E-05 
R2 test 0.4508 0.9999 0.9953 0.9999 0.9999 
Adjusted R2 0.3753 0.9999 0.9796 0.9999 0.9999 
1 COD (mg O2.L-1) and 2CODload (kg.day-1) 
 
The adjusted R² values calculated with the data from the models M1 to M5 also showed no significant 
difference, which means that the network performance was unaffected by the reduction in adjustable 
parameters. Therefore, the complexity of the models can be reduced by appropriate data preparation. In 
other words, the M3 presented a faster learning (18 interactions) when comparing the structure of the 
variability of the ANN models, using the original variables (M2) and the corresponding PCs (M3).This 
was expected since the M3 was built with a smaller number of input data, but the results also showed no 
significant loss of information, which can be considered an advantage of using PCs. Furthermore, this 
performance was repeated when we selected variables by B4 method (M4). Therefore, we conclude that 
the signal-to-noise ratio does not affect the PCA application in this case. 
The error rate is generally more significant because it is a supervised neural network type. It should be 
noted that the model M3 was built considering only five PCs as predictor variables in ANN, but required 
information from eight original variables. The results obtained using PCA; excluding possible outliers 
(M5) were similar to M3, which means that the exclusion of outliers is unnecessary in this case. However, 
this result cannot be generalized. In fact, the presence of outliers can provide incorrect or misleading 
results, mainly during the construction of empirical models. The model M4 was built discarding pH and 
EC variables so, it was the most synthetic and simplest model obtained; therefore it was possible to 
conclude that the two variables discarded do not add information, nor influence the performance of the 
prediction model. 
Table 4 shows the synaptic weights related to each input variable of the models. The results indicate that 
the synaptic weights of the variables influent flow rate and COD were significant to build the models M2, 
M4 and M5. On the other hand, the models M1 and M3 presented the weights of all variables in the same 
order of magnitude. This results indicate that some information, such as the COD concentration and the 
use of PCs as input variables of the MLP, were satisfactory for predicting the organic matter effluent of 
the aerated lagoon. However, for a better understanding of synaptic weights, it is necessary to perform a 
sensitivity analysis, which was not performed in this work.  
The equation (1) was obtained from the model M4 and provides the prediction of removal of the organic 
matter from pulp and paper mill wastewater. 

in paper pulp
out 0.46 COD 0.003 Color 0.0002 Q 0.001Q 0.0017

8.67
4.3COD

1 e− − − − += −
+

       eq. (1) 

 
 



Table 4: Results of the synaptic weights of the models. 
Inputs variable of the MLP 

Models COD Q COD pH Color T EC QPulp QPaper 
M1 mg.L-1 -0.1514 -1.0645 0.1975 -0.0483 -0.0391 -0.3931 -0.0707 -0.0647 
M2 kg.day-1 -0.1243 -0.3201 0.0001 0.0003 0.0001 -0.0003 0.0002 0.0001 
M4 kg.day-1 - -0.46 - -0.003 0 - -0.0002 -0.0001 
M5 kg.day-1 -0.1243 -0.3201 0.0001 0.0003 0.0001 -0.0003 0.0002 0.0001 

  PC1 PC2 PC3 PC4 PC5    
M3 kg.day-1 -1.2451 -0.6821 0.1027 -0.1672 -0.1703 - - - 

 
Figure 1 shows the comparison between predicted and measured values of the M4 test set. It is possible to 
observe that this model perfectly reproduces the overall variation observed in the biological treatment. 
Figure 2 shows the time series plots of the standardized residuals of the M4 model. It is noted that 95% of 
residuals fall in the range (-2, +2), which ensures the normality of residuals and the adequacy of the 
model. Standardization was carried out with the standard deviation of the validation data set. 
 
Fig. 1 Time series plot of measured and predicted CODout of the M4 model  

T im e

CO
D

7 2645 64 84 03 22 41 681

0 , 8 0

0 , 7 5

0 , 7 0

0 , 6 5

0 , 6 0

0 , 5 5

0 , 5 0

V a r i a b le
C O D  m e a s u r e
C O D  p r e d i c t e d

 

Fig. 2 Time series plot of the standardized residuals of the M4 model  
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4. CONCLUSIONS 
This research investigated the use of Principal Component Analysis (PCA) as data-preprocessing 
techniques to build an artificial neural network model that allow the prediction of organic matter removal 
from a pulp and paper mill wastewater. It was concluded that the principal component analysis (PCA), 
applied to select input variables can be useful in neural network learning processes. The use of this 
technique allowed to reduce the number of parameters to be adjusted, without changing the performance 
of the model. The application of the PCA to discard original variable made it possible to improve neural 
network performance without any loss of information. The use of an ANN model may reduce costs by 
discarding unnecessary measurements. However, in this particular case, the PCA technique was 
unnecessary for outlier exclusion.  
It is important to highlight that the choice of the best ANN model should not be done indiscriminately and 
carelessly. It is necessary to use various statistical parameters to assist the choice and the comparison of 
models of different sizes and structures. It is strongly recommended that the preprocessing data, in order 
to be meaningful, must be accompanied by a professional, who has expertise in the process. 
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