Thorium removal from acidic aqueous solutions
by activated biochar derived from cactus fibres

Loukia Hadjittofi & Ioannis Pashalidis
Outline

Background Information

Materials and Methods
Preparation & characterization
Sorption experiments

Data Presentation/Discussion
- FTIR spectra
- pH titration curve
- Sorption data
- Comparison of sorption data

Outlook
Activated Biochar Fibres
Cladodes (*Opuntia Ficus-indica*) ➔
Cactus Fibres

Carbonisation and Activation of the Fibres
- 650 °C under \(O_2 \)-restricted conditions
- boiling in 12 M \(HNO_3 \) for 3 h

Characterisation Sorption Experiments
- pH titration Batch experiment
- FTIR spectroscopy 30 ml test solution
- SEM analysis 0.01 g biochar

5x10^{-6} M < [Th(IV)] < 5x10^{-3} M
Effective collection of actinides from water systems is advantageous for

- recovery and recycling of valuable resources,
- environmental remediation,
- chemical separations, and
- in situ monitoring

Biochar fibres:

Sorbent Characteristics Affecting M(z) Sorption:

- Compatibility (*Mechanical, Thermal, Chemical*)
- Regenerability / Reusability (*Cyclic Adsorption Applications*)
- Cost
- Kinetics (*Porosity - Intraparticle Mass Transfer*)
- Adsorption Capacity (*Texture - Surface Coverage*)
- Selectivity (*Chemical Surface Modification*)
Interaction and Sorption of Metal-ions by Activated Biochar Fibres

Preparation and characterization of the biosorbent

Bioresource Technol 159 (2014) 460
J Radioanal Nucl Chem 304 (2015) 897
Interaction and Sorption of Metal-ions by Activated Biochar Fibres

Preparation and characterization of the biomass sorbent

\[R-COOH \xrightarrow{\text{equivalence point}} R-CO^- + H^+ \]
Interaction and Sorption of Th(IV)-ions by Activated Biochar Fibres

Sorption experiments at pH 3

\[q_{\text{max}} = 0.35 \text{ mol} \cdot \text{kg}^{-1} (81 \text{ g} \cdot \text{kg}^{-1}) \]

Solubility curve of Th(OH)\(_4\)

\[m \text{ Th}^{4+} + r \text{ H}_2\text{O} \leftrightarrow \text{Th}_m(\text{OH})_{8m-r}^{(4m-r)+} + r \text{ H}^+ \]

\[\log K = 47.0 \text{ (I=0.1M)} \]

\[\text{C Moulin et al (2001) Anal Chim Acta 441, 26} \]

hydrolysis → restricted adsorption
Interaction and Sorption of Th(IV)-ions by Activated Biochar Fibres

FTIR spectra \rightarrow inner-sphere complexes

\[\text{Th(IV)}_{\text{activated biochar, pH 3}} \]

\[[\text{Th}]_0 = \begin{array}{c} 1 \text{ E-5 M} \\ 5 \text{ E-5 M} \\ 1 \text{ E-4 M} \\ 1 \text{ E-3 M} \end{array} \]

\[\begin{array}{c} 4000 \text{ cm}^{-1} \quad 3500 \quad 3000 \quad 2500 \quad 2000 \quad 1500 \quad 1000 \quad 500 \end{array} \]

\[T \text{ (\%)} \]

\[1713 \text{ cm}^{-1} \quad 1240 \text{ cm}^{-1} \]

\[\text{R} \quad \text{C} \quad \text{O} \quad + \quad \text{Th} \quad \text{OH}^2+ \quad \leftrightarrow \quad \text{R} \quad \text{C} \quad \	ext{O} \quad \text{Th} \quad \text{OH} \quad + \quad 2 \text{H}_3\text{O}^+ \]
Interaction and Sorption of M(z) by Activated Biochar Fibres

Comparison of adsorption data

Qadeer et al. (2010) Nucleus 47 143
Wang et al. (2011) Microchim Acta 172, 395
Sun et al. (2012) Environ Sci Technol 46, 6020
Sun et al. (2013) Environ Sci Technol 47, 9904

Metaxas et al. (2003) J Hazard Mater 97, 71
Pan et al. (2013) Appl Surf Sci 287, 478

Caccin et al. (2013) J Radioanal Nucl Chem 297, 9
Zhang et al. (2013) J Radioanal Nucl Chem 295,1201
Thank you for your attention