

Performance comparison of three compact systems in grey-water treatment

I. Petousi¹, G. Daskalakis¹, M. Fountoulakis², A. Papadaki¹, C. Tsompanidis¹, E. Dialynas², P. Tzaferou and T. Manios³

¹ENVIROPLAN SA, ²Dialynas SA, ³Technological Educational Institute of Crete,

- ✓ Greywater is defined as household wastewater with minimal input of human excreta
- ✓ It includes used water from baths, showers, hand basins, washing machines, dishwashers, laundries and kitchen sinks
- → Greywater is all domestic wastewater <u>except toilet waste</u>
 → In some cases kitchen wastewater is also excluded

Contribution to domestic wastewater :

- > 60–75% of water volume
- > 29–62% of organic matter
- ▶ 9–14% of Nitrogen
- \geq 20–32% of Phosphorus

Drivers for separate greywater treatment

 Greywater is easier to treat than conventional (mixed) wastewater, because it contains almost no pathogens and little ammonia nitrogen

Drivers for treated greywater reuse

- * Reduces potable water demand
- * Aquifer recharge
- * Improved sustainability of water resource management

Treated greywater reuse options

- Agriculture and aquaculture
- Irrigation: landscape, golf courses
- Municipal uses
 - Fire protection, street cleaning, car washing, cooling, boiler feed and road construction operation
- Non-potable domestic uses
 - Toilet flushing, air conditioning, laundry, floor cleaning
- Use for recreation
 - Ponds, lakes, streams and fountains
- Discharge to surface water, percolation to groundwater

Greywater Treatment depends on : reuse option

-Outdoor (Irrigation)✓ Simple system such

as :

- Sand filter
- Settlement

flotation

-Indoor (Toilet flushing)

- ✓ A more complex system is required such as :
 - Membrane bioreactors (MBR)
 - Rotating biological contactors (RBC)
 - Sequencing batch reactors (SBR)
 - Other

- * During this study the efficiency of three compact treatment systems to treat grey water was examined.
 - * Advantex AX-20, Orenco systems Inc, USA
 - * Biokinetic BK 2000, Norwego, USA
 - * Biorock S, Biorock, Luxemburg

Experimental set-up

The experiment took place in the open-air laboratory of TEI Crete in Heraklion, Greece (N 35°, 19"; E 25°, 10")

Compact systems

AdvanTex[®] AX-20, Orenco Systems Inc, USA

✓ A packed bed filter using a textile material as the treatment media.

Compact systems

Biokinetic, Norwego, USA

✓ Filter bed

Compact systems

BioRock S, BioRock [®], Luxemburg

✓ Filter bed

Operation

Artificial grey water

Parameter	Amount
Tertiary treated wastewater	1000 L
Laundry powder	80 g
Soaps	100 g

Monitoring

- Influent and effluent were sampled regularly and analyzed for:

- ✤ pH (pH-meter 3110, WTW)
- Electrical Conductivity (EC-meter 525, Crison)
- Chemical oxygen demand (test kits, Hach-Lange)
- Total Nitrogen (test kits, Hach-Lange)
- Total Phosphorus(test kits,Hach-Lange)
- Anionic Surfactants (test kits, Hach-Lange)
- ✤ Total Coliforms (IDEXX Quanti-Tray[®])

Results

Results

Parameter	Influent	Effluent Biorock	Effluent Biokinetic	Effluent Advantex
рН	8.2 ± 0.1	7.9 ± 0.1	7.8 ± 0.1	7.8 ± 0.1
EC (mS/cm)	0.69 ± 0.20	0.77 ± 0.18	0.88 ± 0.16	0.78 ± 0.15
COD (mg/l)	88 ± 12	63 ± 10	73 ± 13	24 ± 6
TN (mg/l)	19.9 ± 4.6	13.0 ± 4.3	11.2 ± 4.0	10.3 ± 3.2
TP (mg/l)	1.3 ± 0.3	1.0 ± 0.3	0.7 ± 0.2	0.2 ± 0.1
Surfactants (mg/l)	33 ± 6	16 ± 7	17 ± 4	7 ± 4
Total Coliforms (MPN/100ml)	$4.8 \ge 10^4$	$3.4 \ge 10^3$	$3.2 \ge 10^3$	$1.9 \ge 10^2$

Conclusion

- * A slightly decrease of pH value and a slightly increase of EC values were observed in effluents for all examined systems
 - * This should be under consideration in case of outdoor reuse (for irrigation)
- * COD concentration in effluents was lower for Advantex system (~25mg/l)

* Low removal of nitrogen was observed for all examined systems

- * Anionic surfactants decreased in all effluents especially using Advantex system
- * Pathogen risk was not eliminated, indicated that a chlorination process or a UV system should be added

Thank you for your attention

Acknowledgments:

This research has been co-funded by the European Union (European Regional Development Fund) and Greek national funds through the National Strategic Reference Framework (NSRF): Program "Development of Industrial Research & Technology (PAVET) 2013" (1094-BET-2013, Integrated Water Management in Urban Residential Complexes)

European Regional Development Fund

Ministry of Culture, Education and Religious Affairs