

INSTITUTE OF GEOLOGY AND MINERAL EXPLORATION (I.G.M.E.)

PERSPECTIVES FOR THE PRODUCTION OF INDUSTRIAL MINERALS FROM THE EXPLOITATION OF THE WASTE STEMMING DURING THE EXTRACTION OF GREEK WHITE CALCITIC MARBLES (EASTERN MACEDONIA)

- F. Chalkiopoulou, Mining Engineer, Mineral Processing Department
- I. Chatzipanagis, PhD Geologist, Central Macedonia Branch
- C. Christidis, MSc Geologist

ATHENS MAY 2015

Contents

- 1. Introduction
- 2. Material & Methods
- 3. The Area of Interest
- 4. Evolutions in the calcium carbonate fillers' market
- 5. Discussion

Introduction - 1

- Mining waste \rightarrow 30% of all the waste stream
- Vigorous action by the new EU member States:
 - To transpose EU legislation into national legislation
 - To conduct special plans for the management of mining waste
 - To Compile cadastres

Introduction - 2

<u>Greece</u>

- Production of marbles → Waste rocks equal to 95% of extracted rock
- High whiteness values (>90%) and high calcite content (CaCO₃ > 98%)
- IGME investigating the possibility for feasible comanagement of the wastes
- Ideal candidates as raw materials for the production of added-value products (for the production of fillers) in the market of industrial minerals

Material and Methods - 1

- Preparation of a feasibility study for the Eastern Macedonia marble rejects (project within NSRF 2007-2013)
- 5.550.000m³ or 15.000.000 tons of marble waste have been stockpiled.
- 300.000m³ (700.000 tons) rejects is still being stockpiled annually.
- Six (6) sub areas were examined: (1. Disvato, 2.
 Stenopos, 3. Komnina, 4. Limnia, 5. Falakro Mt, 6.
 Kechrokampos)

Material and Methods - 2

- Laboratory test work in order to assess:
 - Whiteness of powders (CIEL*a*b* measurements with a spectrophotometer CARY 100.
 - Purity (CaCO₃ % by synthesizing assays and mineralogical composition)
 - Mechanical / physical, as well as thermal / weathering behavior (EN 1097.02:2011 - Los Angeles test, EN 1097.06:2000 - particle density / water absorption, EN 1367.02:1999 (Magnesium sulfate test)

The geological study is of extreme importance because:

- 1. Access to stockpiles is difficult and collection of representative samples is not possible;
- 2. The hand samples can only be typical of the rock formations that occur in the area;
- 3. Exploitation of rejects depends on: a) the availability of suitable materials, and b) the possibility to get the desirable qualities;

The geological study is of extreme importance because:

- 4. Correlation between qualities and quantities must be accomplished with the help of an expert geologist in co-operation of course with a mineralogist;
- 5. Further proposals for management and exploitation of the marble waste should be based on the results of such investigation.

•2 •1

Tertiary - Quaternary

Calcitic marbels (~1.200m)

Dolomitic marbles (0-200m)

Cipoline marbles (~300m)

Alternances of schists -

gneisses - marbles amphibolites (300-600m)

Gneisses - migmatites

Granodiorites - ryolites

5: Eastern Falkro Mountain

6: Kechrokampos

(>2.000m)

1: Disvato 2: Stenopos 3: Komnina 4: Limnia

Area of Interest – 4

Lithostratigraphic Column of Western Rhodope showing the stratigraphic position of the

exploitation areas

Tertiary - Quaternary •2 •1 Calcitic marbels (~1.200m) Dolomitic marbles (0-200m) Cipoline marbles (~300m) Alternances of schists gneisses - marbles amphibolites (300-600m) Gneisses - migmatites (>2.000m) Granodiorites - ryolites 1: Disvato 2: Stenopos 3: Komnina 4: Limnia 5: Eastern Falkro Mountain 6: Kechrokampos

Area of Interest – 5

- Three discrete lithological units:
 a) Marbles unit (Upper unit);
 b) Alternances unit (Middle unit),
 and c) Gneisses unit (Lower unit)
- Marbles unit is of interest for the present:
 - The Falakro massif calcitic marbles with a thickness of about 1.200m;
 - 2. Dolomitic marbles with a thickness from 0 to 200m, and
 - 3. Banded cipoline marbles with a thickness of about 300m.

- The Falakro massif calcitic marbles are holocrystalline and are almost entirely consistent of pure calcite.
 The color varies from grey to white.
- At Stenopos, Disvato, Kechrokampos, Komnina, Limnia and Eastern Falakro Mountain, the marbles are exploited as ornamental stones with a rate of 6-7%, due to the existence of intense faulting, deformation and other weathering factors, resulting in rejection of significant quantities of white to semi-white marble fragments as unusable materials.

Area of Interest -8 (E. Falakro)

Area of Interest – 9 (Stenopos)

Area of Interest – 10 (Limnia)

Area	L* (%)	Tristimulus value Y (%)	CaCO ₃ , %
1. Disvato	96,9-97,8	92,2-94,5	99
2. Stenopos	97,6-98,2	93,9 – 95,6	98-99
3. Komnina	98,3-98,4	95,7-95,9	99
4. Limnia	96,8-98,1	90,0-95,2	99-100
5. E. Falakro	96,5-98,5	91,2-95,8	98-99
6. Kechrokambos	98,3	95,7	98

Optical properties and CaCO₃ content of the materials in the area under study

Area	Calcite, %	Dolomite, %	Others (mainly quartz), %
1. Disvato	96,9-97,3	2,4-2,6	0,3-0,8
2. Stenopos	96,3-96,9	2,7-3	0-0,7
3. Komnina	97-97,3	1,7-2,3	0,6-1
4. Limnia	97-98%	1,5-2,5	0-1
5. E. Falakro	95-97,5	1,3-3,1	1-1,3
6. Kechrokambos	96,5	1,5	0,7-1,8

Mineralogical composition of the materials in the area under study

Market Aspects – 1

- A market research was conducted very recently (2015) focusing on the potential of producing Ground Calcium Carbonate Fillers (GCC) by using white calcitic marble, updating and verifying the results of a similar study of IGME of 2008.
- The total annual capacity (2015) of the Greek companies producing fillers is 0,8 Mt (almost the same with 2008);
- Despite the economic crisis, the domestic fillers' production has shown slightly upward trends. The sector is highly depending on exports (80%) all over the world.

Market Aspects – 2

Marble waste prepared to feed a fillers producing mill (Stenopos)

The utilization of marble waste has become a common practice for the production of Ground Calcium Carbonate in Greece.

Discussion - 1

- The sustainable management of mining waste has become a major goal in Europe with a priority to prevent their production and if produced to pursue their exploitation as secondary resources.
- Regarding Greece, extraction of marbles is an activity which results in large amounts of waste rocks equal to 95% of the extracted rock.

Discussion - 2

- Eastern Macedonia, is of great interest due to abundant waste materials coming from the extraction of white calcitic marbles.
- Extensive long-time investigation which has been accomplished by IGME, within numerous projects, shows that it is feasible to use this material in order to feed Ground Calcium Carbonate Fillers Mills.

Discussion - 3

- The industry has made use of the research findings and invested in the field.
- Currently, the Greek Ground Calcium Carbonate Fillers' sector is healthy and growing steadily.
- Incorporation of best practices in the management of marble waste by marble quarry operators, taking into account their potential future utilization, needs further promotion.

THE END

Thank you for your attention