Co-utilization of construction and demolition with industrial wastes for the production of geopolymers

Kostas Komnitsas, <u>Dimitra Zaharaki</u> School of Mineral Resources Engineering, Technical University of Crete, 73100, Chania, Greece

Industrial Waste & Wastewater Treatment & Valorisation

21-23 May 2015, President Hotel, Athens

Athens, 21-23 May 15

Objective

Investigation of the co-geopolymerization potential of the construction/demolition wastes (tiles, bricks and concrete) with fly ash, electric arc furnace slag and red mud

Contents

- Geopolymerization
- Materials and experimental methodology
- Co-geopolymerisation of CDW and a) fly ash, b) ferronickel slag, c) red mud
- Characterization and morphology of the specimens
- Conclusions

Geopolymers

- Geopolymers are cementitious inorganic materials formed by the alkali activation of aluminosilicates at relatively low temperatures
- Partially or fully amorphous polymeric structures consisting of Si–O–Al bonds
- The tetrahedral AlO₄ and SiO₄ units are built in three dimensional structures

Geopolymerization

- The structure and mechanical properties of geopolymers are affected by several parameters
- The potential of various industrial wastes such as fly ash, slag and red mud for the production of geopolymers has been investigated extensively during the last 25 years
- The synthesis of geopolymers using construction/demolition wastes (CDW) still remains a challenge and a limited number of studies have been carried out so far

÷

Raw materials

[aluminosilicate materials or industrial by-products] Activating solution [KOH or NaOH and Na₂SiO₃]

 Electric arc furnace slag from the "LARCO S.A" ferronickel plant

• CDW (tiles, bricks and concrete)

 Fly ash from the Megalopolis power station

 Red mud from "Aluminium of Greece"

Athens, 21-23 May 15

Table 1. Particle size (µm) of raw materials

	Tiles (T)	Bricks (B)	Concrete (C)	Fly ash (F)	Slag (S)	Red mud (R)
size	<140	<140	<190	<121	<120	<76
d ₅₀	14	7	10	10	12	4

Table 2. Chemical composition (%) of the raw materials

Component	Tiles (T)	Bricks (B)	Concrete (C)	Fly ash (F)	Slag (S)	Red mud (R)
SiO ₂	70.54	57.79	5.81	47.68	32.74	9.28
Al ₂ O ₃	9.80	14.95	1.49	18.44	8.32	15.83
CaO	8.78	8.79	65.42	9.94	3.73	10.53
Fe ₂ O ₃	5.39	6.00	0.75	7.52	43.83	41.65
Na ₂ O	-	1.03	0.57	0.37	-	2.26
K ₂ O	1.37	2.80	1.26	1.44	-	0.21
MgO	4.46	4.75	4.21	2.65	2.76	1.13
MnO	0.06	0.05	0.01	-	0.41	-
P ₂ O ₅	-	0.23	0.73	0.28	-	0.12
SO ₃	-	-	0.82	2.76	0.45	0.3
TiO ₂	0.77	0.85	0.03	0.76	-	4.73
Cr ₂ O ₃	-	-	-	-	3.07	-
CO ₂	-	-	-	3.87	0.40	-
LOI	0.23	1.89	21.59	4.3	-	16.77
Total	101.40	99.13	102.69	100.1	95.71	102.81

LOI: Loss on ignition after heating the material at 1050 °C for 4 h

Experimental methodology

- The activating solution consists of NaOH anhydrous pellets, distilled water and sodium silicate solution
- Raw materials are mixed with the activating solution (6, 8 or 10 M NaOH). Control specimens were prepared by mixing each waste alone with the activating solution.
- The specimens produced (5 cm edge) were heated at 80 or 90 °C in a laboratory oven for 7 days and then subjected to compressive strength testing using a Matest C123N load frame
- X-ray diffraction (XRD) (Bruker D8 Advance diffractometer)
- Fourier transform infrared spectroscopy (FTIR) on KBr pellets (Perkin– Elmer Spectrum 1000 spectrometer)
- SEM analysis (JEOL 6380LV scanning electron microscope)

Geopolymers from concrete, bricks and tiles (left to right)

Tiles-red mud geopolymers

CDW-slag geopolymer

Athens, 21-23 May 15

Results and discussion

ble 3. Molar ratios of oxides of the initial paste for the synthesis of selected geopolymers (10 M NaOH)

	MDo	$\frac{\text{SiO}_2}{\text{M}_2}$	$\frac{\text{SiO}_2}{(11.0) + C_2(0)}$	$\frac{H_2O}{(N_2 + N_2 + N_2)}$	$\frac{(\mathrm{Na}_2\mathrm{O}+\mathrm{K}_2\mathrm{O})}{\mathrm{CO}}$	$\frac{\text{SiO}_2}{(1 + 2)}$
	IVIPd	AI_2O_3	$(AI_2O_3 + CaO)$	$(Na_2U + K_2U)$	\$10 ₂	$(\mathbf{AI}_2\mathbf{U}_3 + \mathbf{F}\mathbf{e}_2\mathbf{U}_3)$
	57.8	12.67	4.81	9.03	0.12	9.38
	39.4	6.84	3.30	8.32	0.14	5.44
	7.8	9.86	0.12	6.62	1.53	7.47
	52.0	4.70	2.37	8.95	0.22	3.73
	76.1	7.33	4.03	8.30	0.10	1.68
	0.9	1.33	0.60	8.11	0.96	0.50
Г-20F	53.0	10.51	4.28	9.06	0.14	10.57
B-20F	45.0	6.41	3.12	7.50	0.17	6.48
C-20F	21.6	5.91	0.24	8.40	0.54	5.93
S-10T-10B-30C	59.2	8.26	1.18	6.96	0.14	2.67
S-30T-30B-15C	74.0	8.86	2.21	6.10	0.10	4.54
Г-10R	51.0	10.83	4.22	8.55	0.10	6.98
Г-50R	29.0	5.60	2.36	8.22	0.21	2.58
3-10R	38.8	6.24	2.99	7.19	0.17	4.44
3-50R	22.0	3.98	1.86	7.54	0.28	2.00
C-10R	7.0	5.07	0.13	8.50	1.07	2.47
	4.0	2 01	0.22	0.24	0.00	0.70

iles-20 bricks-10

DW and

nclusions

dustrial wastes, namely fly ash, slag and red mud

risation potential is shown for y mixing % w/w: 10 concrete (76 MPa)

(JI MFU)

ted to the:

imim

nclusions

and SEM analyses provide very useful insights on sture and the characterization of the wmers

e aluminosilicate geopolymeric

tiles, slag and fly ash are us matrix - SEM

> spheric Vymers -

n<mark>k you</mark>

of Crete rces Engineering t of Mining/Metallurgical Wastes and Rehabilitation of <u>http://www.mred.tuc.gr/3020.html</u>

> (European Regional Development Fund) and by ad Entrepreneurship" (OPCE II 2007 - 2013), ing of quarry dust and construction and **RECOBEL 11SYN_8_584**, in the framework ions in Focused Research and

http://www.durecobel.gr/

