International Conference Industrial Waste & Wastewater Treatment & Valorisation

APPLICATION OF STAINLESS STEEL SLAG WASTE AS A PARTIAL REPLACEMENT TO MANUFACTURE CEMENT MORTARS

Julia Rosales, University of Córdoba, Spain

Construction Engineering- University of Cordoba (Spain)

STAINLESS STEEL PRODUCTION

INTRODUCTION

STAINLESS STEEL MANUFACTURING PROCESS

INTRODUCTION

VALORIZATION STAINLESS STEEL WASTE

INTRODUCTION

AGGREGATES

AGRICULTURE

Soil improvement

CONSTRUCTION

- Road base
- Concrete
- Addition to Clinker

LESS USE OF NATURAL RESOURCES

SUSTAINABILITY

SLAG

AGRICULTURE

Soil improvement

TREATING WASTEWATER

CONSTRUCTION

- Soil-cement
- Concrete
- CEMENT MORTAR

Few research related to stainless steel slag waste for use as a substitute for cement

Principal objetive: study of cement replacement by different percentages of stainless steel slags crushed and without crushed for making mortars to determine the optimal replacement rate to increase the economic value of stainless steel slag waste and decrease the cement content

TREATMENT AND PROCESSING OF SW

- Study the cementitious properties
- Analysis of environmental effects through leaching test
- Study the effect on the compressive strength, flexural and shrinkage
- Application of multivariate analysis methods

STAINLESS STEEL SLAG WASTE AS CEMENT REPLACEMENT IN MORTAR

RESEARCH DESIGN

STAINLESS STEEL SLAG WASTE AS CEMENT REPLACEMENT IN MORTAR

MATERIALS AND EXPERIMENTAL METHODS

X-RAY FLUORESCENCE (XRF) CEMENTITIOUS PROPERTIES SW AND SW-C

CHEMICAL PROPERTIES RESULTS

	SiO ₂ (%)	Al ₂ O ₃ (%)	Fe ₂ O ₃ (%)	CaO (%)	MgO (%)	SO ₃ (%)	K ₂ O (%)
SW	31,34	5,18	1,25	46,26	10,90	0,37	0,00
SW-C	30,31	5,01	0,93	46,45	11,51	0,36	0,00

(Calleja, J. 1985)

LEACHING TEST HEAVY METALS LEACHATE BY SW AND SW-C

CHEMICAL PROPERTIES RESULTS

MECHANICAL BEHAVIOR COMPRESSIVE STRENGTH STAINLESS STEEL SLAG WASTE AS CEMENT REPLACEMENT IN MORTAR

RESULTS

FLEXURAL STRENGTHMECHANICAL BEHAVIORSTAINLESS STEEL SLAG WASTE AS CEMENT REPLACEMENT IN MORTARRESULTS

SHRINKAGEMECHANICAL BEHAVIORSTAINLESS STEEL SLAG WASTE AS CEMENT REPLACEMENT IN MORTARRESULTS

The <u>mechanical behavior</u> of mortars must be analyzed as a <u>whole</u> (Compressive Strength, Flexural Strength and Shrinkage)

Multivariate analysis: a useful tool to evaluate the influence of addition of slag waste in the mechanical behavior

MULTIVARIATE ANALYSIS METHODS

- Ordination Analysis. Principal Components Analysis (PCA)
- Multivariate Analysis of Variance (MANOVAs)

SAS 9.4

MULTIVARIATE ANALYSIS

RESULTS

The cement replacement by stainless steel slag waste provides an increased in compressive and flexural strength for 10% substitution respect to the control. For stainless steel slag waste crushed we are observed better results. For mortars manufactured with this percentage, the retractions are similar to the control mortar. International Conference Industrial Waste & Wastewater Treatment & Valorisation

APPLICATION OF STAINLESS STEEL SLAG WASTE AS A PARTIAL REPLACEMENT TO MANUFACTURE CEMENT MORTARS

Julia Rosales, University of Córdoba, Spain

juliarosalesgarcia@gmail.com

J. Rosales – F. Agrela – M. Cabrera – M.G. Beltrán – J.Ayuso

