

Application of diluted olive mill wastewater enhances plant growth & changes soil fertility parameters

Munir J. M. Rusan

Jordan University of Science and Technology

Irbid – JORDAN

Industrial waste and wastewater treatment & valorization Athens May 21-23, 2015

Goal & Objectives of MEDOLICO

- The goal of MEDOLICO is to Prevent/reduce the environmental risk presented by OMW on the Mediterranean Sea Basin
- The specific objectives of MEDOLICO are to:
 - 1. Evaluate advanced techniques of OMW treatment
 - 2. Valorize the by-products recovered from the OMW

OMW in the Mediterranean Sea Basin:

- 30 MCM of OMW generated annually in the Mediterranean region.
- It is either evaporated or disposed in the areas surrounding olive Mills
- These methods of disposal are not appropriate and therefore,
 - → There is real potential for contamination
 - → Proper OMW management is crucial for sustainability of MED environment

OMW in Jordan

There are 130 olive mills under operation

- They generate 200,000 m³OMW/year
- It is prohibited to discharge OMW to sewage system due to its nature
- Disposed to dumping sites or to the surrounding areas without

Pollution power of OMW:

- OMW is a liquid industrial ww from olive oil extraction process
- Composed of large amounts of organic load that is mainly non-biodegradable & phytotoxic due to phenolic compounds
- imposes a great deal of impact on environment & public health
- Pollution power of OMW is
 > 200 times that of MWW

What are the Challenges of OMW treatment

- Complexity & costs of treatment options at commercial level
- Can not be treated in municipal www treatment plants
- Most common and cheapest treatment option is lagooning (natural evaporation), widely used in most Mediterranean countries

Objective:

• The Objective of this study was to determine whether the dilution of OMW, as non-expensive technique, will eliminate its phytotoxicity and be used as an Irrigation water and enhances soil fertility

Materials & Methods

Treatments			Code	
Tap water	\rightarrow	0% OMW	0%	OMW
Diluted OMW	\rightarrow	25% OMW & 75% tap water	25%	OMW
Diluted OMW	→	50% OMW & 50% tap water	50%	OMW
Diluted OMW	\rightarrow	75% OMW & 25% tap water	75%	OMW
Undiluted OMW	7 ->	100% OMW	100%	6 OMW

Characteristics of water & OMW	W	OMW*
pH initial	7.8	4.7
EC, dS m ⁻¹	0.56	7.6
TSS, mg 1 ⁻¹	10	1236
TP, mg I ⁻¹	0.98	1666
COD, g I ⁻¹	ND	118
N, mg I ⁻¹	11.7	96
P ₂ O ₅ , mg I ⁻¹	34.3	369
K ₂ O, mg l ⁻¹	10.9	2441
Total bacterial count, CFU ml ⁻¹	-	2.13 X 10 ⁻⁶

EC= Electrical conductivity; TP= Total polyphenols; COD = Chemical oxygen demand; TSS = Total suspended solids.

Greenhouse pot exp. = Five Kgs soil / pot

Soil characteristics = Basic, alkaline low in OM, N, P and micronutrients

Crop = Hybrid maize (*Zea mays*)

Irrigation = Periodic irrigation to maintain field capacity soil moisture

After harvest, plant & soil samples were analyzed for physical and chemical properties

Soil pH (1:1 soil:water suspension)	8.18
EC (1:1 soil:water extract (dS m ⁻¹)	0.61
CEC (cmol kg ⁻¹)	34.32
O.M (%)	0.72
N (%)	0.01
P (mg kg ⁻¹)	7.11
K (mg kg ⁻¹)	452
CaCO ₃ (%)	13.3
Fe (mg kg ⁻¹)	3.56
Mn (mg kg ⁻¹)	5.58
Zn (mg kg ⁻¹)	1.88
Cu (mg kg ⁻¹)	1.22
Pb (mg kg ⁻¹)	0.68
Cd (mg kg-1)	0.06
Bulk density (g cm³)	1.38
Texture Class	Silty clay loam

Results

Infiltration rate, mm hr-1

Relationship between plant dry weight and height and dilution of OMW with potable water

Total bacterial count in the soil (CFU ml⁻¹)

Water (0%OMW) & undiluted OMW (100%omw)

Plant uptake of macronutrients

	N	P	K	
Trts	gm Plant ⁻¹			
0% _{OMW} (water)	0.99 b	0.17 b	1.38 b	
100% _{OMW}	0.48 d	0.06 d	0.44 d	
75% _{OMW}	0.66 с	0.08 d	1.04 c	
50% _{OMW}	0.98 b	0.11 c	1.48 b	
25% _{OMW}	1.74 a	0.26 a	2.14 a	

Plant uptake of micronutrients and heavy metals

Trts	Fe	Mn	Zn	Cu	Cd	Pb
	mg Plant ⁻¹					
0% _{OMW} (water)	3.68	1.86	0.39	0.02	0.05	0.17
100% _{OMW}	1.74	1.61	0.27	0.03	0.02	0.08
75% _{OMW}	1.72	1.64	0.21	0.03	0.07	0.08
50% _{OMW}	1.95	1.72	0.22	0.02	0.14	0.09
25% _{OMW}	1.81	1.92	0.25	0.02	0.16	0.11
LSD _{.05}	NS	NS	NS	NS	NS	NS

Soil characteristics after plants harvest

Treatments	PH	EC	ОМ	TP	BD
		dS/m	0/0	0/0	g/cm3
0% _{OMW} (water)	7.87 a	0.98 d	1.21 d	0.11 e	1.22 a
100% _{OMW}	7.70 b	5.88 a	2.10 a	20.67 a	1.09 b
75% _{OMW}	7.87 a	4.88 b	1.96 a	15.95 b	1.09 b
50% _{OMW}	7.90 a	3.22 c	1.83 ab	10.31 c	1.2 a
25% _{OMW}	7.87 a	2.83 c	1.65 bc	5.09 d	1.2 a

Soil macronutrients and secondary nutrients after plants harvest

Treatments	N	Olsen-P	K	Ca	Mg	Na
	%	mg kg ⁻¹	mg kg ⁻¹	meq L ⁻¹	meq L-1	meq L-1
0% _{OMW} (water)	0.09 b	8.83 d	631 d	3.47 e	3.13 e	2.96 d
100% _{OMW}	0.12 a	82.50 a	2926 a	23.73 a	22.70 a	8.10 a
75% _{OMW}	0.12 a	64.23 b	2558 b	17.70 b	16.73 b	7.59 a
50% _{OMW}	0.11 a	54.53 bc	2290 b	11.23 d	13.10 с	6.31 b
25% _{OMW}	0.12 a	28.23 c	1664 c	12.77 cd	8.27 d	5.03 c

Soil DTPA-extractable micronutrients after plants harvest

	DTPA Fe	DTPA Mn	DTPA Zn	DTPA Cu			
Trts		mg kg ⁻¹					
0% _{OMW} (water)	1.50 b	3.10 d	0.88 c	1.49 a			
100% _{OMW}	3.12 a	83.40 a	2.45 a	1.30 a			
75% _{OMW}	3.69 a	65.27 b	2.40 a	2.10 a			
50% _{OMW}	4.34 a	27.70 c	2.50 a	1.87 a			
25% _{OMW}	2.86 a	22.77 c	1.93 b	1.56 a			

Conclusions

- Soil application of undiluted OMW had phytotoxic and prohibiting effect on plant growth and soil microorganisms
- On the other hand, soil application of OMW improved soil fertility thru increasing levels of OM & nutrients in the soil
- Dilution of OMW with potable water at water to OMW ratio of 3:1 (25%OMW) is recommended before soil application to eliminate its phytotoxicty and to enhance plant growth
- Such dilution can be adopted without any further treatment as an inexpensive technique before application
- Finally, the enhancement of soil OM, N, P and K and improving soil fertility is of particular importance for the poor soils of the arid and semi-arid region.

Khank You