The effect of activated carbon and membrane filtration in the removal of pharmaceutical products in hospital wastewaters

T. Alvarino, N. Torregrosa, S. Suarez, J.M. Lema, F. Omil

University of Santiago de Compostela

OMPs					
				Ionization	Sorption
OMPs	Therapeutical	S	Н	рКа	Log Kow
	group	(solubility, mgL ⁻¹)	(<i>Henry constant,</i> μg m ⁻³ air/μg m ⁻³)	(dissociation constant)	(octanol-water coefficient)
Ibuprofen (IBP)	Antiinflamatory	21	6.1 10 ⁻⁶	4.9-5.2	3.4-4
Naproxen (NPX)	Antiinflamatory	16	1.4 10 ⁻⁸	4.2	3.2
Diclofenac (DCF)	Antiinflamatory	2.4	1.9 10 ⁻¹⁰	4.1-4.2	4.5
Sulfamethoxazole (SMX)	Antibiotic	610	2.6 10 ⁻¹¹	1.8-5.2	0.9
Trimethoprim (TMP)	Antibiotic	400	9.8 10 ⁻¹³	6.6-7.2	0.9-1.4
Erytromycin (ERY)	Antibiotic	1.4	2.2 10 ⁻²⁷	8.9	2.5-3
Roxithromycin (ROX)	Antibiotic	0.02	2.0 10 ⁻²⁹	9.2	2.8
Carbamazepine (CBZ)	Neurodrug	17.7	4.4 10 ⁻⁹	7	2.4-2.9
Estrone (E1)	Estrogen	3.6	1.5 10 ⁻⁹	10.4	3.9-4
Ethinylestradiol (EE2)	Estrogen	11.3	3.3 10 ⁻¹⁰	10.5-10.7	3.7-4

Suarez et al., 2008

Biological reactor + PAC

- - Nitrifying conditions enhance biodegradation
- Membrane configurations more effective
 - High Solid Retention Time promote biodegradation

Lab-scale reactors

Microfiltration MBR

Flat sheet (0.45 µm)

Ultrafiltration MBR

Hollow fiber (0.045 μm)

Hydraulic retention time	1 d	
Organic loading rate	0.3 g/L d	
Nitrogen loading rate	0.03 g/L d	
Total suspended solids	2-5 gVSS/L	

OMPs concentration: 1-20 μ g/L
PAC addition: 250 mg/L (3 times)

Pure aerobic conditions

ventional parameters

	Microfiltration MBR		Ultrafiltration MBR			
	Before PAC addition	After PAC addition	Before PAC addition	After PAC addition	Phy	
IH ₄ removal (%)	97	98	98	99	sical b	
D removal (%)	96	97	97	99	oiomass	
tleability	High	Very high	Low	High	chara	
erability	High	Very high	High	Very high	cteris	
ticle size (µm)	77	88	42	44	stics	

Powder activated carbon (SEM Image)

obiological characterization (biomass)

chesium polypinum (40X)

Aspidisca lynceus (40X)

Espirilo (10X)

No influence of the membrane configuration in OMPs removal:

F1 FF2 hiotransformation

onclusions

- ganic matter degradation and nitrification above 95% were nieved in both MBRs.
- operties of the sludge enhanced after PAC addition.
- luence of the type of membrane only on the removal of DCF d ROX.
- gh removal efficiency achieved for the whole set of compounds th periodical PAC addition

	Sorption onto PAC	Biotransformation
NPX, IBP, SMX, E1, EE2	-	++
CBZ, DCF	++	_

knowledgements

Xunta de Galicia MicroDAM project (EM 2012/087) Galician Competitive Research Group GRC2013/32

GOBIERNO DE ESPAÑA

XUNTA

DE GALICIA

Spanish Ministry of Education and Science HOLSIA project (CTM2013-46750-R) DEMAGUA project (A-03637899) RED-NOVEDAR project (CTQ2014-51693-REDC)

Thanks to VIAQUA for their collaboration in preparing this study

e effect of activated carbon and embrane filtration in the removal of armaceutical products in hospital astewaters

Thanks for your attention