
An Integrated Process for Utilization of Pomegranate Peels

K. Kaderides, A. M. Goula, K. G. Adamopoulos

Laboratory of Food Processing and Engineering, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece

Pomegranate Structure

24% Peel

Composition of Pomegranate Peel Powder

Component	Content (%, dry matter)
Total solid	96.00
Moisture	4.00
Total sugar	31.38
Protein	8.72
Crude Fiber	21.06
Fat	9.40
Ash	5.00
Total phenolic	8.10

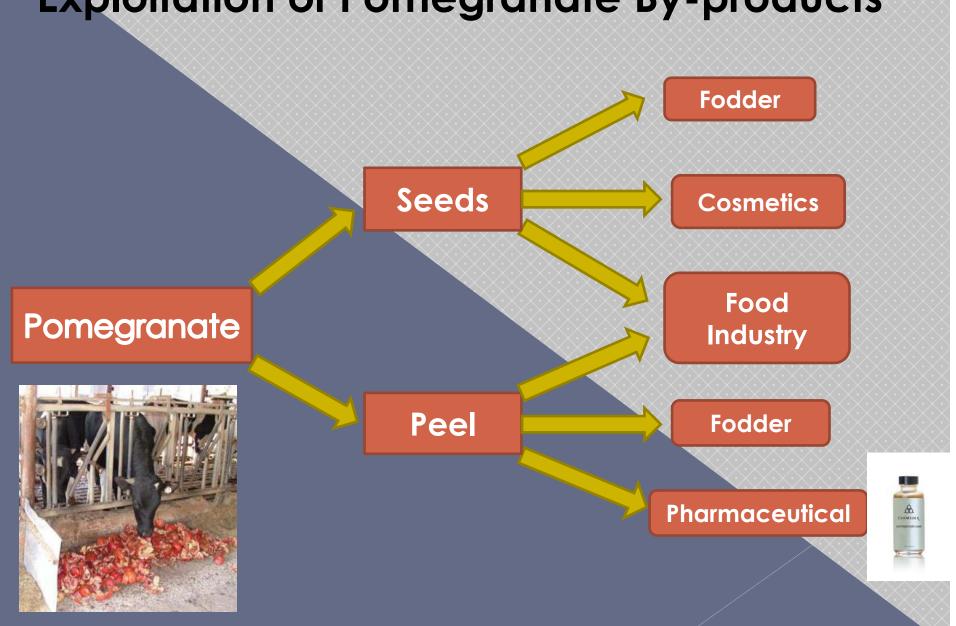
Aguilar et al.,2008; Ullah et al.,2012

Polyphenol Content of Pomegranate Peel Powder

Phenolic Fraction	Content (mg/100g dry matter)		
Ellagic acid	44.19		
Catechins	868.40		
Gallic acid	125.80		
Protocatechol	4.17		
Parahydroxy benzoic acid	9.02		
Vanilline	3.91		
Caffeic acid	60.46		
Ferulic acid	5.89		
P-coumaric acid	17.64		
Others	8.20		

Pomegranate: Biological Activities

Antioxidant activity


Anticancer properties

Reduce risk of coronary heart disease

Antimicrobial activity

Antifungal activity

Exploitation of Pomegranate By-products

Project Objective

The exploitation of pomegranate peel based on:

- 1. Ultrasound assisted extraction
- 2. Encapsulation by spray drying

Optimization:

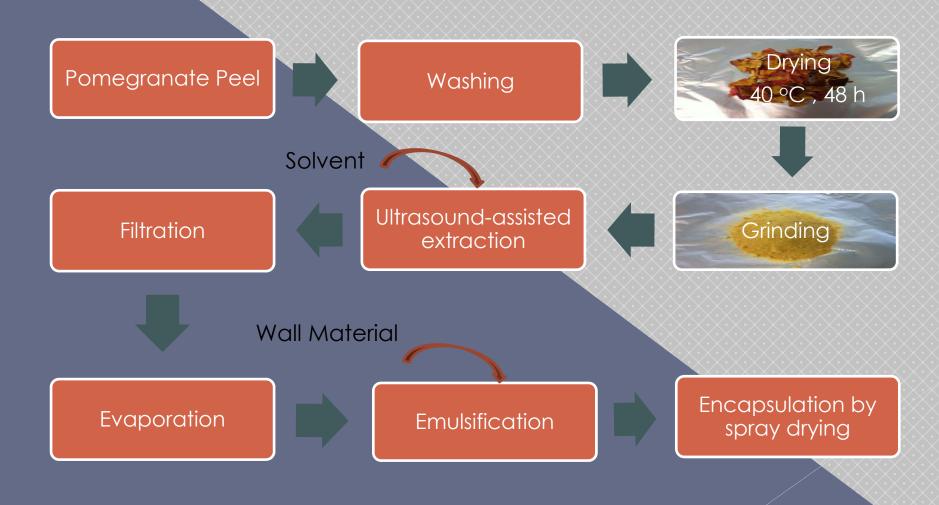
- 1. Ultrasound assisted extraction of phenolic compounds
- 2. Encapsulation by spray drying of phenolic compounds
- Incorporation of encapsulated phenolic compounds in foods (hazelnut paste) aiming to delay the oxidation

Techniques of Extraction Phenolic Compounds From Pomegranate Peel

Technique of extraction	Time (min)	Yield (g GAE/100 g dry matter)	Reference
Normal Stirring	60	8.26 – 11.9	Wang et al., 2011; Pan et al., 2011
Pressurized liquid	15	25.8 – 26.4	Cam & Hisil, 2010
<u>Ultrasound-assisted</u>			Pan et al., 2011
(Continuous)	6	14.8	
(Pulsed)	8	14.5	
Microwave-assisted	1	21.5	Zheng et al., 2011

Why Encapsulation of Phenolic Compounds

Increase their stability during storage and their passage through the gastrointestinal tract


The improvement of color

The masking of astringency

Suitability for use as an additive in functional foods

Materials and Methods

Integrated Process for Pomegranate Peel Application in Food Industries

Factors Affecting the Ultrasound-Assisted Extraction Process

- Extraction temperature
- Solvent type
- 3. Solvent/Solid ratio
- 4. Amplitude level
- 5. Pulse duration/Pulse interval ratio
- 6. Extraction time

130 W, 20 kHz VCX-130 Sonics and Materials (Danbury, CT, USA) με Ti– Al–V probe (13 mm)

Experimental Design for Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Pomegranate Peel

Response surface methodology (32 experiments)

Parameters	Levels					
	1	2	3	4	5	
Solvent type	Ethanol	Methanol	Water	50% Aqueous methanol	Ethyl-acetate	
Extraction temperature (T, °C)	25	30	35	40	45	
Solvent/Peel ratio (LP)	10/1	20/1	30/1	40/1	50/1	
Amplitude level (A, %)	20	30	40	50	60	
Pulse duration/pulse interval ratio (on/off) (PUL, -)	5/15	3/4	7/6	19/12	2/1	

Factors Affecting the Spray Drying Encapsulation Process

- Inlet air temperature
- 2 Feed solids concentration
- 3. Ratio of core to wall material
- Drying air flow rate
- 5 Drying air humidity

Buchi, B-191, Buchi Laboratoriums-Technik, Flawil, Switzerland

Experimental Design for Optimization of Spray Drying Encapsulation of Phenolic Compounds from Pomegranate Peel

Response surface methodology (32 experiments)

Parameter	Levels				
	1	2	3	4	5
<i>Wall material</i> (Wm)	MD	SMP	MD/SMP	MD/WPI	MD/GA
Ratio of core to wall material (c/w)	1/9	1/5.3	1/3.7	1/2.9	1/2.3
<i>Inlet air temperature</i> (Ti, °C)	150	160	170	180	190
Drying air flow rate (Qa, %)	50	54	58	62	66
Feed solids concentration (\$, %)	10	15	20	25	30

MD: Maltodextrin

SMP: Skim Milk Powder

WPI: Whey Protein Isolate

GA: Gum Arabic

Physical properties of the Microcapsules

Moisture content

Bulk density

Rehydration ability

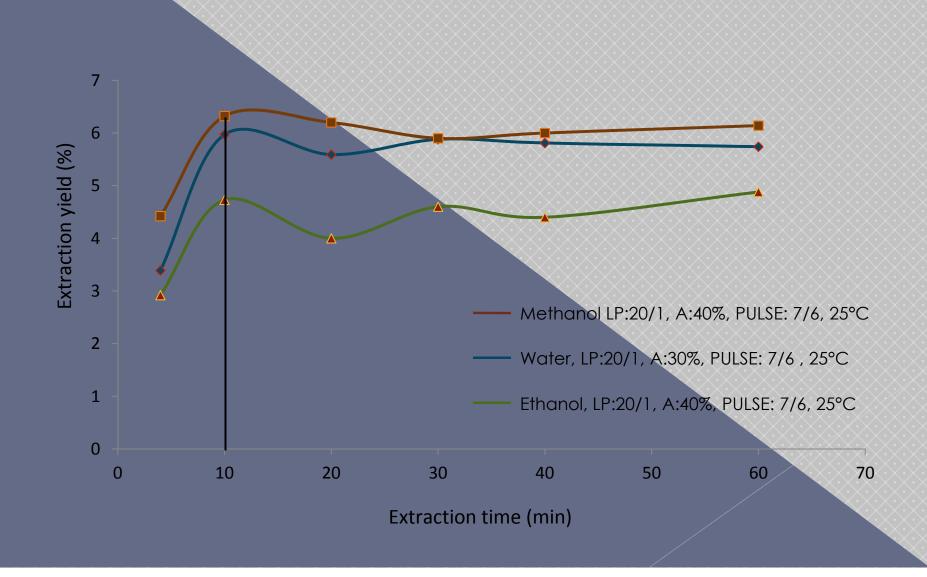
Incorporation of phenolic compounds in foods

PRODUCT: Hazelnut paste

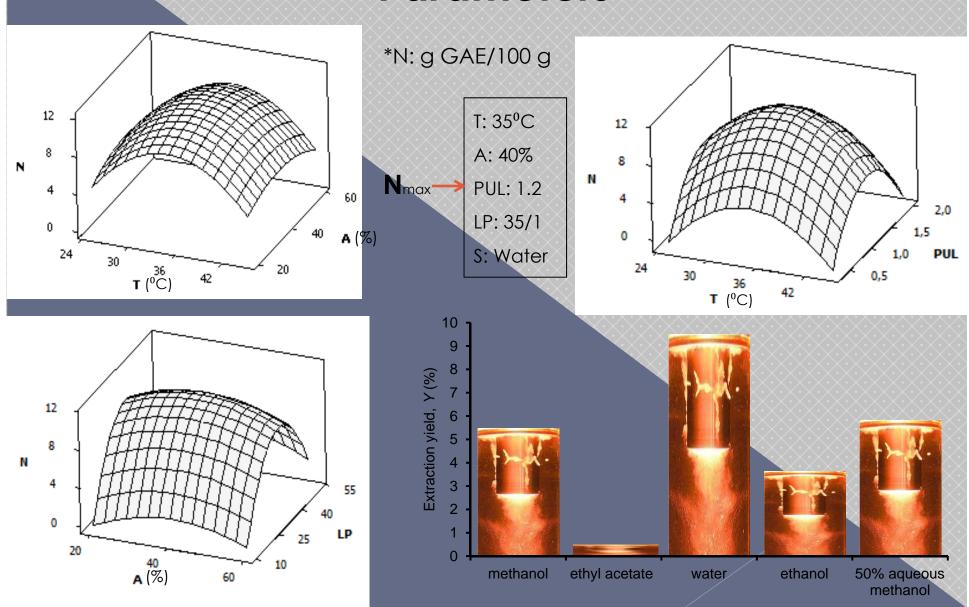
AGENT ADDED: Phenolic extract encapsulated in

optimal conditions

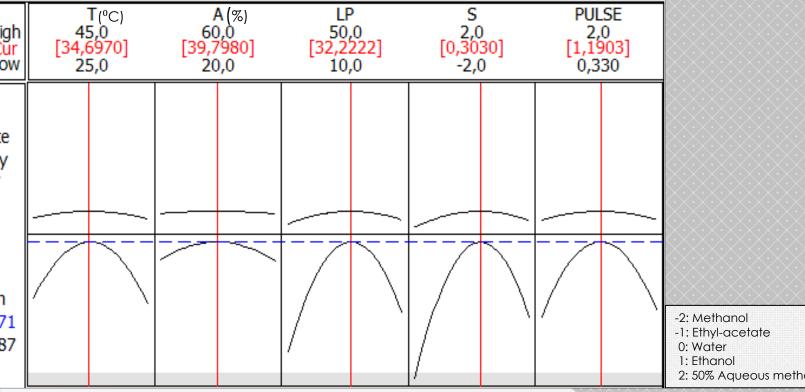
PHENOL CONCENTRATION: 5000 ppm


Oxidation rate in 3 samples of hazelnut paste was tested:

- 1. Addition of nanoencapsulated extract
- 2. Addition of crude extract
- 3. Control sample

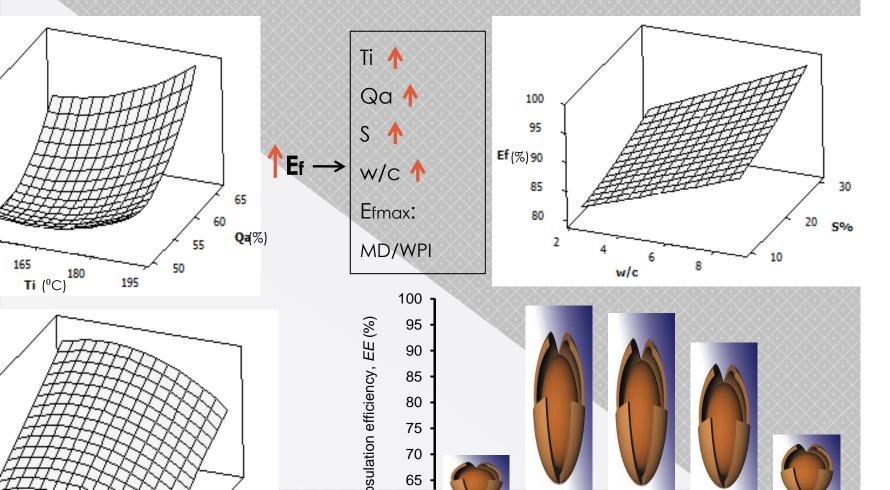

An accelerated shelf-life test at 60 °C was carried out until 51 days

Results

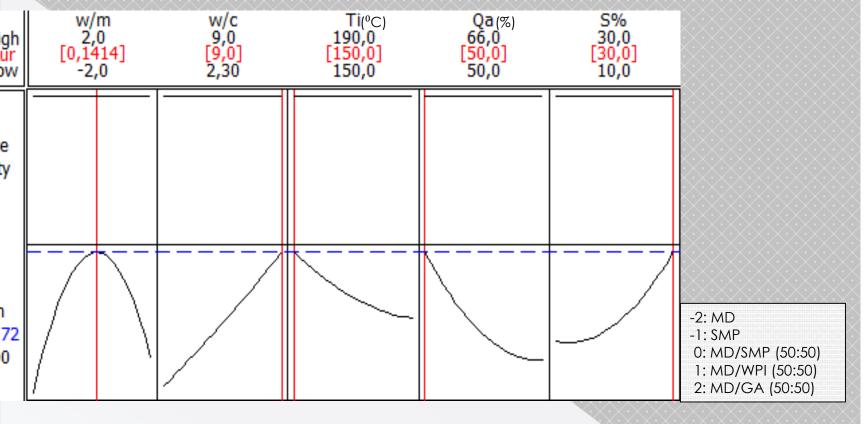

Extraction Yield - Effect of Extraction Time

Extraction Yield - Effects of Various Parameters

Extraction Yield – Optimization


2: 50% Aqueous methanol

Empirical model of extraction yield:


 $Y = -88,058 + 3,417 \times T + 1,197 \times LP + 21,161 \times PULSE - 0,048 \times T^2 - 0,018$

 \sim 0.1 $\rm n^2$ \sim 2.2 $\rm n^2$ \sim 2.5 $\rm n^2$ \sim 2.5 $\rm n^2$ \sim 2.5 \sim 2.7 \sim 2

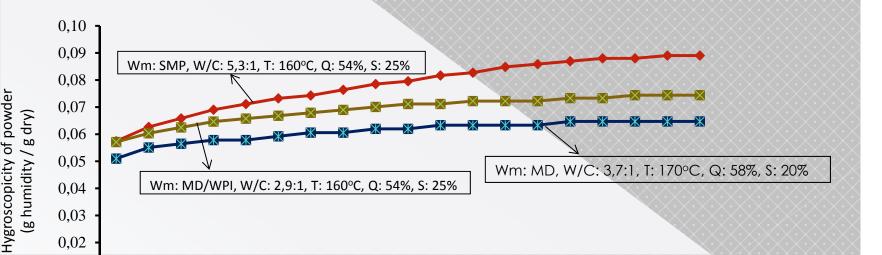
capsulation Efficiency- Effects of Various Parameters

ncapsulation Efficiency – Optimization

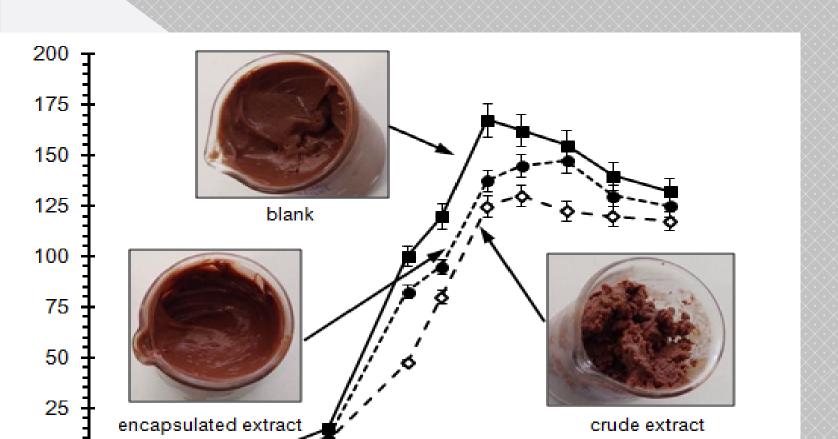
Empirical model of encapsulation efficiency:

 $E_f = 592.196-10.348\cdot Qa-0.613\cdot S-5.510\cdot Wm^2+0.081\cdot Qa^2+0.050\cdot S^2+0.181\cdot Wm\cdot S-0.081\cdot Qa^2+0.050\cdot S^2+0.081\cdot Qa^2+0.081\cdot Qa^2+0.081\cdot$

0.017 (--/-) T' 0.110 (--/-) C


hysical properties of the Microcapsules

Powder moisture content: 3.79 to 6.02%


Bulk density: 0.13 to 0.74 g/mL

Rehydration: 19-48 s

Hygroscopicity:

ect of Pomegranate Peel Extract (Crude and Encapsulated) on Oxidative Deterioration of Hazelnut Paste

Conclusions

Conclusions

egrated approach for utilization of pomegranate peels is suggested based on und-assisted extraction of phenolic compounds followed by its encapsulation using a suitable spray drying technique

sounds increased extraction yield, but mainly shortened the treatment time by 20 times.

action yield increased increasing extraction temperature up to 35°C, amplitude I up to 40%, solvent/peels ratio up to 33/1, decreasing pulse duration/pulse val ratio and using solvent type water.

highest encapsulation efficiency achieved about 98.64% using todextrin/whey protein isolate as wall material.

iency increased with an increase in inlet air temperature, drying air flow rate, drying

Thank you