Energy recovery and treatment of wine lees using a compact anaerobic digester

Eleftheria Nikolaidou Chemical/ Environmental Engineer

HYDRO MANAGEMENT

EUROPEAN UNION EUROPEAN UNION EUROPEAN PEGIONAL DEVELOPMENT FUND

Ministry of Culture, Education and Religious Affairs GSRT - Management and Implementation Agency for RTD and Innovation Activities

Laboratory for Wastewater Management

and Treatment Technologies-

Democritus University of Thrace

Introduction

R&D Project:

Two goals
✓ Winery Wastewater treatment and
✓ Waste valorization – Energy recovery

Wine production

- One of the most important sectors of the Greek industry involving 470,000 tons of grapes per year
- Around 600 wineries most of them small or medium sized <1000tn/y family business
- ✓ Wineries present a challenge for wastewater treatment
- In Greece there is no common practice for winery waste management Discharge in sewer system WWTP before discharge Grape marcs usually used as fertilizer in fields

Winery by-products

Grape marcs

Wine lees

Process wash water

✓ High organic load
✓ Most is readily biodegradable (70-80%)
✓ Source of energy

Scope of the work

1) Winery Wastewater characterization

- 2) Laboratory scale anaerobic treatment
- 3) Pilot plant Results analysis
- 5) Cost analysis for a scale up system
- 6) Proposals for further optimization developments

The final aim is the design of an attractive and sustainable small – medium size system for wide scale application across the Southern Europe market

Anaerobic digestion

- Stabilization of organic wastes
- Simple design and operation
- Mild conditions (pH, T, P)

Laboratory experiments

- 50L and 70L stirred tank reactors
- low mixing velocity
- Temperature: 35 °C
- Inoculum: from anaerobic digester of a dairy industry

Followed on daily basis

- Biogas production
- ≻ pH
- Digester temperature

Measured twice a week

- ➤ TSS
- ➤ VSS
- Total and soluble COD

Laboratory experiments

Wine lees

- liquid fraction (supernatant)
- particulate fraction

- ✓ Sedimentation process
- ✓ Further dilution with tap water to a COD 20-35 g/L

Laboratory results

Wine lees – liquid fraction

- Operation with organic loading rate up to **10** kg/(m³ d)
- Biogas production: 1,0 6,0 m³/(m³ d)
- Biogas yield: 0,53 m³/ kg CODin (theoretical 0,50-0,65 m³/kg CODin)
- COD removal rate >97%

Laboratory results

Wine lees – particulate fraction

- Displays lower degradability compared to liquid fraction Up to 2 kg/ (m³ d)
- Biogas production : 0,2 1,7 m³/(m³ d)
- COD removal rate: 88-90%

Laboratory results

Grape marc extract

- Solid/liquid: 1/3, T = 20°C, t = 1d
- COD in 30 g/L
- COD removal > 90%
- OLR: 3,5kg/(m³ d)

• Biogas production: 1,3 m³/(m³ d)

Pilot Plant – Kechris winery

- 2m³ storage tank 3m³ anaerobic digester
- Mixer motor, electrical resistance for heating, insulation
- pH-controlled feeding system feed was interrupted as soon as the pH fell below a certain value
- Inoculum: from anaerobic digester of a dairy industry

Followed on daily basis

- Biogas production
- ≻ pH
- > Digester temperature

 Measured twice a week
 Total and soluble COD inlet – outlet – reactor

Pilot Plant - Flow diagram

Pilot plant

Pilot results

Substrate	Soluble COD concentration (g/L)	Organic Loading Rate (g/l·d)	Biogas yield (m ³ / kg CODin)	COD removal (%)
Wine lees	14-23	0,1-3,6	0,44	95,0
Grape marc extract	21-29	0,3-6,3	0,64	97,0
Process wash water	7-35	0,3-3,6	0,37	97,0

Conclusions

- The Wastewater was treated successfully
- Energy recovery:
 - 15.500 m³ biogas and 11.500 m³ methane
 - In CHP: 3,5 kWh_{el}/m³ CH₄, total 40.000 kWh_{el}
 - Profit of 8.800 € for every winemaking season
- > Present and Future development:
 - Optimization of feeding system, automation and control
 - Prototype digester design

THANK YOU