

Valorisation of agroindustrial waste for the production of energy, biofuels and biopolymers

Prof. Gerasimos Lyberatos
National Technocal University of Athens

Industrial Waste & Wastewater Treatment & Valorisation Athens, 21-23 May 2015

Biomass

- Biomass Organic and animal wastes, wastewaters, energy crops, agricultural and industrial residues
- → Biomass: is the oldest and most promising source of energy

Valorization of agroindustrial wastes

Added-value products and energy

Biomass utilization for energy

- First generation (energy crops)
 - Serious concern as it replaces food resources
- Second generation (residues, mainly lignocellulosic)
- Third generation (algal biomass)

Biomass Conversion to Biofuels

Technologies:

- ➤ Chemical (biodiesel)
- Thermal (direct combustion, pyrolysis, gasification)
- ➤ Biological (anaerobic digestion, hydrogen fermentation, alcoholic fermentation etc)
- **►** An emerging new possibility:

Direct Electricity Generation: Microbial fuel cells (MFCs)

Anaerobic metabolism

What will be produced depends on:

- 1. Feedstock characteristics
- 2. Microbial species present (pure and mixed cultures)
- 3. Operating conditions

Anaerobic digestion

- ✓ One of the most important biochemical processes for biomass conversion
- ✓ CH₄ and CO₂ are produced from organic substrates via mixed microbial consortia
 under anaerobic conditions

Overall reaction:

Organic substrates + $H_2O \rightarrow CH_4 + CO_2 + NH_3 + new cells$

- •Methane production (gaseous biofuel)
- Suitable for wastes of high organic load
- Digestate can be composted

Anaerobic digestion

High Organic Content Industrial Wastewaters

Virtually AD is the only feasible biological process for treating agroindustrial wastewaters (e.g. dairy, piggery and olive-mill)

- √ high organic load
- ✓ seasonal nature
- ✓ small distributed units

Normally **high retention times** are needed in standard CSTR-type reactors

High-rate reactors such the UASBR and the ABR have been developed

Periodic Anaerobic Baffled Reactor (PABR)

... based on the simple ABR configuration ...

... it was made <u>flexible</u> to alternate its operation between the ABR (compartmentalized) and UASBR (homogenized) operation mode by directing the influent into all compartments <u>successively</u>.

The PABR compartments are arranged in a circular manner:

The experimental PABR

Feedstocks & Conditions - CH₄

The North Control of C

- Sorghum extract
 - 20d, 15d, 10d
- Olive Mill Waste
 - 20d, 15d, 10d
- Dairy wastewater
 - 20d, 10d, 4.4d

Yields and rates – CH₄

	HRT (h)	CH₄ (%)	Specific rate (Lbiogas/L/d)	Specific rate (L CH ₄ /L/d)	Yield (LCH ₄ /kg TS)
	20	64.4 ± 2.0	0.34 ± 0.03	0.21 ± 0.02	25.2
	15	64.9 ± 1.8	0.53 ± 0.02	0.35 ± 0.02	31.2
	10	63.1 ± 1.2	0.93 ± 0.02	0.59 ± 0.01	35.2
	20	66.2 ± 2.0	0.64 ± 0.05	265	79.5
	15	65.0 ± 2.0	0.79 ± 0.05	245	73.6
	10	67.0 ± 2.0	1.13 ± 0.08	234	70
	20	74.9 ± 1.0	1.7 ± 0.3	1.3 ± 0.2	26
	10	73.6 ± 3.0	3.5 ± 0.5	2.6 ± 0.3	26
	4.4	71.8 ± 2.2	6.9 ± 0.6	5.0 ± 0.6	22

Fermentative hydrogen production

Why hydrogen?

- A clean and environmentally friendly fuel which produces water instead of greenhouse gases, when burned
- Possesses the highest specific energy yield (122kJ/g)
- Could be used to produce electricity through fuel cells
- Can be produced by renewable raw materials, such as biomass, through biological or thermochemical processes

Fermentative hydrogen production

ACETIC ACID PRODUCTION

- $C_6H_{12}O_6 + 2H_2O \rightarrow 2CH_3COOH + 2CO_2 + 4H_2$ BUTYRIC ACID PRODUCTION
- $C_6H_{12}O_6 \rightarrow CH_3CH_2COOH + 2CO_2 + 2H_2$ PROPIONICC ACID PRODUCTION
- $C_6H_{12}O_6 + 2H_2 \rightarrow 2CH_3CH_2COOH + 2H_2O$ LACTIC ACID PRODUCTION
- $C_6H_{12}O_6 \rightarrow 2CH_3CHOHCOOH$ ETHANOL PRODUCTION
- $C_6H_{12}O_6 \rightarrow 2CH_3CH_2OH + 2CO_2$

√The absence or presence of hydrogen consumers in mixed consortia also
affects the final distribution of metabolites and H₂ yields

✓ Mixed microbial consortia need to be pretreated so as hydrogen consumers to be suppressed and hydrogen producers to dominate the consortium

Thermal pretreatment (100°C, 15min)

Parameters affecting fermentative hydrogen production

- pH
- H₂ partial pressure
- Hydraulic Retention Time (HRT)
- Temperature
- Nutrients concentration
- Initial carbohydrates concentration
- Organic loading

Hydrogen production from wastewaters, solid wastes and energy crops

In this framework several bioreactors of **CSTR** (Continuous Stirred Tank Reactor), **SBR** (Sequential Batch Reactor) and **UFCR** (Up-flow Column Reactor) type are used for the exploitation of :

- ✓ Dairy wastewater
- √ 3-phase and 2-phase olive mill wastewater
- ✓ Sweet sorghum biomass
- √ Glycerol
- ✓ Food wastes
- ✓ Wastepaper sludge

Reactors & Conditions – H₂

- ☐ CSTR type, 0.5 or 3 L
- \Box T=35° C
- ☐ HRT differs according to substrate
 - Sorghum extract
 - 24h, 12h, 8h, 6h, 4h
 - Olive mill wastewater
 - 30h, 14.5h, 7.5h
 - Dairy wastewater
 - 24h

- ☐ Column bioreactor, 1,5L
- ☐ Immobilization of cells on ceramic beads
- **□** T=35° C
- ☐ HRT 36h
 - glycerol

Yields and rates - H₂

	HRT (h)	H ₂ (%)	Specific rate (L H ₂ /L/d)	Molecular yield (molH ₂ /mol gluc)	Yield (L H ₂ /kg)
	24	30.4 ± 1.2	0.82 ±0.08	0.37 ± 0.02	4.9
	12	39.9 ± 1.2	3.48 ± 0.20	0.86 ± 0.04	10.4
	8	40.5 ± 1.9	4.14 ± 2.40	0.75 ± 0.05	8.4
	6	39.2 ± 0.5	5.10 ± 0.18	0.70± 0.02	7.6
	4	35.0 ± 1.5	4.36 ± 0.30	0.41 ± 0.02	4.3
	30	26.4 ± 1.7	0.26 ± 0.01	0.81	1.9
	14.5	26.7 ± 1.4	0.39 ± 0.05	0.61	1.3
	7.5	29.1 ± 1.6	0.47 ± 0.05	0.504	0.8
>	24	29.3 ± 1.6	2.51 ± 0.43	0.9 ± 0.1	(LH ₂ /L) 2.49
	36	37.1 ± 1.2	0.35 ± 0.01	0.13 ± 0.0	3.1

Hydrogen and methane production in a two-stage process

- √ Stabilization of waste
- ✓ Minimization of COD
- ✓ Maximum energy generation

- O The effluent of hydrogen generating reactors is used directly as substrate for further stabilization and valorisation in continuous anaerobic digesters for methane recovery
- ✓ Dairy wastewater
- ✓ 2-phase olive mill wastewater
- ✓ Sweet sorghum biomass
- ✓ Glycerol
- ✓ Food wastes

Production of polyxydroxyalkanoates

PHAs accumulated by numerous bacteria as reserve of carbon and energy source in the form of inclusion bodies (granules) with a diameter of 0.2-0.9 μm.

PHB intracellular granules formed in *Ralstonia eutropha* (Yu J., 2002)

Most common PHAs:

- \checkmark R = CH₃ ⇒ PHB poly-3-hydroxybutyrate
- \checkmark R = C₂H₅ ⇒ PHV poly-3-hydroxyvalerate

PHAs Biosynthesis

General Approach

Alternating nutrient limitation (carbon & nitrogen) leads to PHA formation when nitrogen availability is limited

Sequencing batch reactor

SBR phases:

- a) growth phase, N supply (no or limited carbon supplied),
- b) biomass settling phase (no aeration and stirring)
- c) supernatant withdrawal ($\frac{2}{3}$ of V_w),
- d) PHA accumulation phase, C supply (nitrogen limitation)
- e) withdrawal of 2/3 of the working volume under agitation (for PHAs extraction)

- Olive-mill wastewater
- Industrial glycerol

Recovery of PHAs from Cells

Collecting dry biomass by centrifugation, freezing and lyophilization

Extraction with chloroform

Purification: Mixing the extract with methanol for precipitation of bioplastic and then filtration

Collection of the solid and re-dissolution in chloroform to obtain bioplastic films

Electricity generation by microbial fuel cells

A **fuel cell** is an electrochemical energy conversion device that produces **electricity** from external supplies of fuel (on the anode side) and oxidant (on the cathode side).

In the **microbial fuel cell** electricity is produced via microorganisms

Substrates studied:

Pure substrates:

- ✓ Glucose, lactose
- ✓ Glycerol

Wastes:

- √ dairy wastewater
- ✓ municipal wastewater

The working principle of an MFC

Chemistry of MFC: As an example, glucose is used as an organic substrate.

Anode: $C_6H_{12}O_6 + 6H_2O \longrightarrow 6CO_2 + 24H^+ + 24e^-$

Cathode: $24H^+ + 24e^- + 60_2 \longrightarrow 12H_2O$

Two-chamber MFC

- Two bottles connected via a glass tube.
- Anode electrode: carbon fiber paper
- Cathode electrode: carbon cloth coated with a Pt catalyst
- Proton exchange membrane (Nafion 117)

Experiments using (diluted) cheese whey as substrate

- \checkmark After addition of fresh medium: the MFC voltage increased rapidly, reaching a constant value within only a few hours (approximately 50 mV for an external load of 100 Ω)
- ✓ COD removal completed within 50 hours, accompanied by rapid decrease in voltage

➤ Diluted cheese whey (dilution 1:100) at a final concentration of 0.73 g COD/L

Varying the external load from 0.1 to $1000~k\Omega$

Maximum power density 18.4 mW/m²

Experiments with cheese whey

Initial	% COD	Duration of	Maximum
concentration	removal	each cycle	power
(mg COD/L)		(h)	output
			(mW/m ²)
350	95	68	40.5
700	96	110	39.9
1500	96	213	39.8
2700	96	335	38
6700	96	851	42

Duration as a function of initial concentration

Single cell chamber

Innovative single chamber MFC

- A single cylindrical plexiglas chamber with four plexiglas tubes placed, in a concentric arrangement, inside the chamber.
- The tubes inside the cell were homogenously drilled with holes
- ➤ Anode electrode: graphite granules.
- ➤ Cation Exchange Assembly: GORE-TEX ® cloth covered with graphite conductive paint and electrolytic manganese oxide, MnO₂.

Continuously operated Single chamber performance using glucose as substrate

Thank you for your attention!