

National Technical University of Athens School of Chemical Engineering *Biotechnology Laboratory*

🕼 IWWATV

Industrial Waste & Wastewater Treatment & Valorization

Enzymatic Bioconversion and Fermentation of Corn Stover at High-solids Content for Efficient Ethanol Production

Constantinos Katsimpouras, P. Christakopoulos, E. Topakas

21-23 May 2015, President Hotel, Athens

Potential of Greek agroindustrial residues

Culture	Type of culture	Biomass production (kg/acre)		
Cereals	Wheat	217.5		
	Oats	120		
	Rye	150		
	Barley	150		
Corn		1000		
Cotton		314		

Data kindly provided by Professor Gemtos Farm Mechanization, University of Thessaly

Preparation of corn stover samples

Hydrothermal pretreatment (laboratory scale)

Speed wave ™ MWS-2, Berghof Instruments GmBH, Germany
✓ DAP-60K (60 mL, 40 bar, 260 ° C)
✓ DIRC (temperature sensor)

- Response surface methodology had been employed in order to optimize the pretreatment step (temperature, duration)
- Pretreated samples were evaluated through enzymatic hydrolysis using the benchmark commercial cellulase preparation Celluclast 1.5L together with βglucosidase Novozyme 188

Hydrothermal pretreatment optimization

➢ Response surface methodology (RSM) →

→ 3² central composite design (CCD)
2 factors: Temperature (°C) & Time (min)
4 factorial points, 5 central points, 4 axial points

> This design is represented by a second order polynomial regression model: $G=a_0+a_1 x_1+a_2 x_2+a_3 x_1^2+a_4 x_2^2+a_5 x_1 x_2$

Range of each independent variable in the central composite design

Variables						
Coded level of factors	Time (min)	Temperature (°C)				
Axial point (-1.414)	9	170				
Low level (-1)	15	180				
Central level (0)	30	200				
High level (+1)	45	220				
Axial point (1.414)	51	230				

Design-Expert®
Design of Experiments
Analysis of CCD
ANalysis Of VAriance (ANOVA)
Contour & Surface plots

Hydrothermal pretreatment optimization

Pretreated samples evaluation

✓ Compositional analysis (NREL)

✓ Enzymatic hydrolysis (glucose release (g/L) after 8h)

_	Factors		Responses		
Run	Temperature (°C)	Time (min)	Cellulose (%w/w)	Glucose release (g/L)	Predicted glucose release (g/L)
1	200	30	58.8	6.59	6.54
2	220	15	61.7	7.55	7.57
3	200	51	60.0	4.82	4.69
4	200	9	56.1	6.42	6.24
5	200	30	58.5	6.54	6.54
6	170	30	46.8	4.21	3.77
7	180	45	51.7	4.08	4.05
8	220	45	63.4	5.73	5.81
9	200	30	59.2	6.46	6.54
10	200	30	58.5	6.58	6.54
11	180	15	48.5	4.42	4.49
12	200	30	59.1	6.33	6.54
13	230	30	64.2	7.32	7.22

Hydrothermal pretreatment optimization

• The second order polynomial regression model that was obtained in our study is described as:

 $C_q = -58.63 + 0.552x_1 + 0.318x_2 - 0.001158x_1^2 - 0.002432x_2^2 - 0.001044x_1x_2$

- ✓ Low probability p-value (p<0.0001)
- ✓ Coefficient of variation R²=0.92

Optimum pair of pretreatment temperature and duration for maximum glucose release \rightarrow 230 °C & 15 min

Maximum predicted glucose release \rightarrow 7.71 g/L after 8h

Temperature (°C)

Experimental value →7.96 g/L

Enzymatic hydrolysis at high solids loading

Why high solids loading?

Higher sugars concentration \rightarrow Higher ethanol concentration

Ability to achieve EtOH conc. above 4% (w/w)

Why free fall mixer?

High solids content → Viscous slurry Conventional stirring techniques → Poor mass-transfer Gravimetric mixing → Increased enzymatic hydrolysis @ shorter time

Liquefaction step

Solids loading → 24% (w/w)

Enzyme solution \rightarrow Cellic[®] CTec2 at 9 mg/g DM

Conditions → 50°C, pH: 5.0, 7 rpm

Duration \rightarrow 12 or 24 h

Simultaneous Saccharification & Fermentation

In Erlenmeyer flasks

- > 25 g liquefacted Corn Stover
- ➤ 15 mg/g DM yeast Ethanol Red[®] @ 35°C, 80 rpm

Conclusions

- Hydrothermal pretreatment with dilute acetic acid of corn stover was optimized by RSM.
- ✓ At optimal conditions (230 °C, 15 min) 7.96 g/L of glucose were released after 8 h of hydrolysis which is very close to the predicted value of 7.71 g/L
- ✓ Gravimetric mixing enabled Corn stover's proper liquefaction at 24% (w/w) solids loading
- A 12 h liquefaction step was adequate for the efficient cellulose hydrolysis
- ✓ Liquefacted Corn Stover permitted submerged fermentation
- \checkmark High ethanol concentration was achieved (> 4%)

Extra work need to be done towards a more efficient enzymatic hydrolysis, studying the effect of the addition of auxiliary enzymes, such as xylanases, ferulic acid esterases and lacasses.

Thank you for your attention!

The financial support of General Secretariat of Research and Technology (GSRT) of Greece-ESPA 2007–2013 (Σ YNEP Γ A Σ IA 2011; 11 Σ YN_7_1579) is gratefully acknowledged. We are also grateful to Novozymes A/S for the generous gift of Celluclast[®] 1.5L and Novozyme[®] 188 and Cellic[®] Ctec2, and to Lesaffre for the generous gift of Ethanol Red[®].

> Ευρωπαϊκή Ένω Ευρωπαϊκό Ταμείο Περιφερειακής Ανάπτυξης

(Ε. Π. Ανταγωνιστικότητα και Επιχειρηματικότητα (ΕΠΑΝ ΙΙ), ΠΕΠ Μακεδονίας – Θράκης, ΠΕΠ Κρήτης και Νήσων Αιγαίου, ΠΕΠ Θεσσαλίας – Στερεάς Ελλάδας – Ηπείρου, ΠΕΠ Αττικής)

