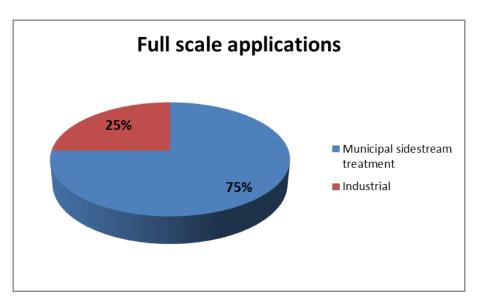
A critical review of the future trends and perspectives for the implementation of Anammox in the main line of municipal WWTPs





I. Fernández\*, J. Dosta, J. Mata-Álvarez isaac.fernandez@ub.edu




## Layout of the presentation

- 1. Introduction
- 2. Strategies to maximize C energy recovery from municipal wastewaters
- 3. Low strength and low temperature wastewaters
- 4. Effective retention of Anammox biomass
- 5. One-step vs two-steps systems
- 6. Conclusions

Industrial Waste & Wastewater Treatment & Valorisation

2

# *1. Introduction: Worldwide full size implementation of PN/Anammox*



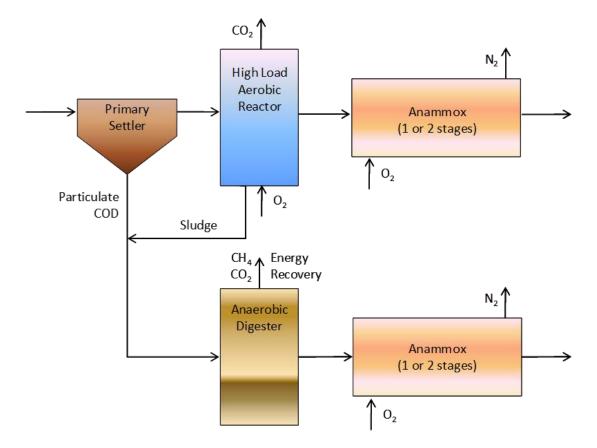
More than 100 full scale plants worldwide (2014)
Almost all treating high strength wastewaters

Typical loads 0.5-2 kg N/m<sup>3</sup> d
Typical [NH<sub>4</sub><sup>+</sup>] about 1 g N/L

All PN/Anammox at municipal

• All PN/Anammox at municipal WWTPs treating sidestream

## Full scale application of PN/Anammox virtually restricted to low C/N wastewaters


Lackner, S, Gilbert, E.M., Vlaeminck, S.E., Joss, A., Horn, H., van Loosdrecht, M.C.M.: Full-scale partial nitritation/anammox experiences—an application survey. Water Res. 55, 292–303 (2014).

Athens, May 29, 2015

3

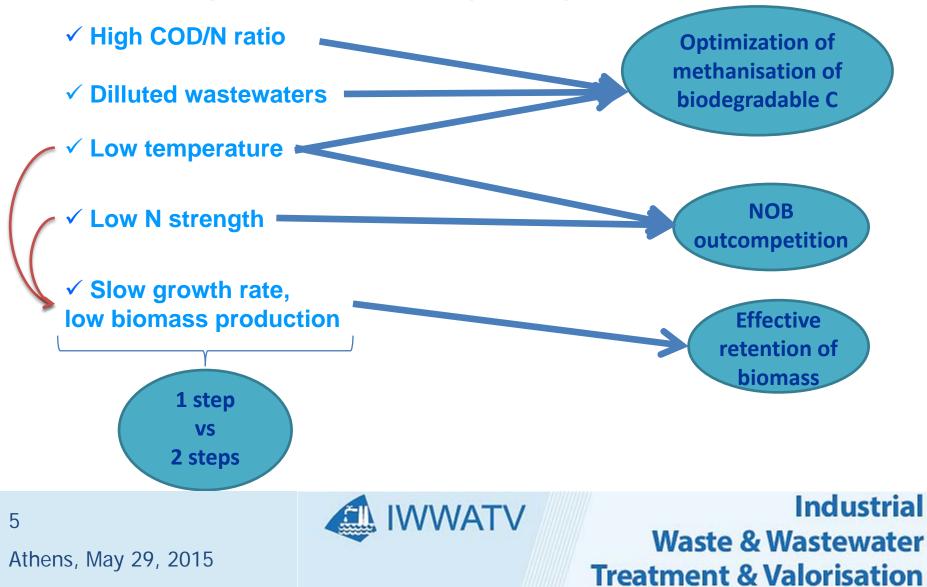


### *1. Introduction: Implementation in the main line of the WWTPs*



- Municipal or industrial municipal-like wastewater: medium to high C/N
- Most of COD transformed into biogas: energy recovery
- Very low sludge production
- Limitations: low T, low NLR, system control and stability (NOB suppression)

Méndez R., Fernández I., Campos J.L. and Mosquera-Corral A. (2010). Aspectos Energéticos de la Tecnología Anammox. In: Ecoeficiencia en la EDAR del Siglo XXI. Aspectos ambientales y energéticos, Ed. Lápices 4, Santiago de Compostela, ISBN: 13 978 84 693 7960 8.


4

Athens, May 29, 2015



## *1. Introduction: Limitations and issues to be addressed*

#### Anammox: improvement of start-up and operation



### 2. High COD/N ratio management: Strategies to maximize C energy recovery

#### Direct Anaerobic Digestion in the main stream

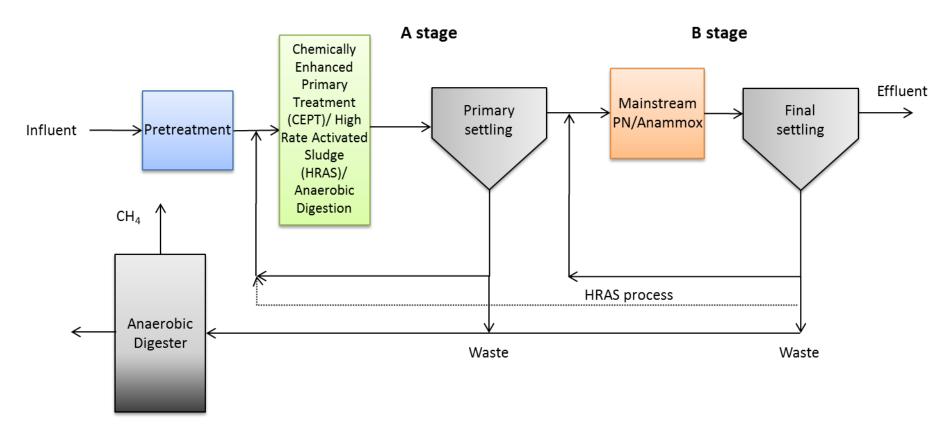
- Diluted wastewater
- Low temperature

Anaerobic Co-Digestion of the main stream

#### Biodegradable C concentration

• Relatively low conversion (40 % at 17 °C, Gao et al. 2014)

• Significant solubilisation of the produced CH<sub>4</sub> (up to 40%)


- Maximum recovery of particulate COD by upgraded primary settling (simplest alternative)
- Other physico-chemical treatments: sieving, dynamic sand filtration (DSF), dissolved air flotation (DAF)
- Maximum conversion of biodegradable soluble COD into biomass and recovery together with particulate COD: bioflocculation, chemically enhanced primary treatment (CEPT), high rate aerobic granulation, high rate aerobic system (HRAS)

Athens, May 29, 2015

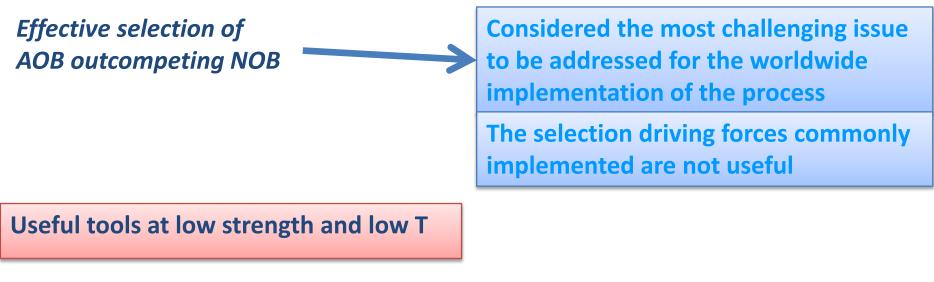
6



## *2. High COD/N ratio management: Strategies for maximize C energy recovery*



#### Maximum recovery of biodegradable COD as biomass: "A-B stage" system


Xu, G., Zhou, Y., Yang, Q., Lee, Z.M.P., Gu, J., Lay, W., Cao, Y., Liu, Y.: The challenges of mainstream deammonification process for municipal used water treatment. Appl. Microbiol. Biot. 99(6), 2485-2490 (2015).

Athens, May 29, 2015

7

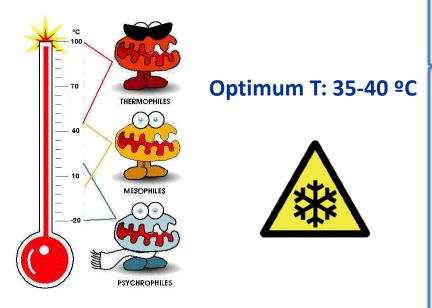


## 3. Low strength and low temperature wastewaters



- Intermittent aeration  $\rightarrow$  NOB are more affected by transient anoxia
- Use of online sensors for N species
- Bioaugmentation of AOB
- Biofilm reactors




Industrial Waste & Wastewater Treatment & Valorisation



## 4. Effective retention of Anammox biomass

#### Anammox process:

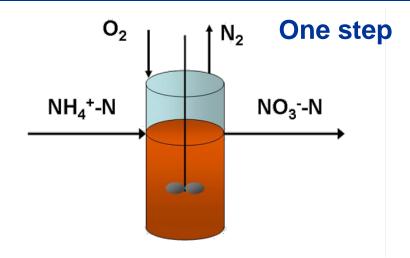
- Y: 0.038 g VSS/g NH<sub>4</sub>+-N
- t<sub>duplication</sub> = 6-12 d (optimum)



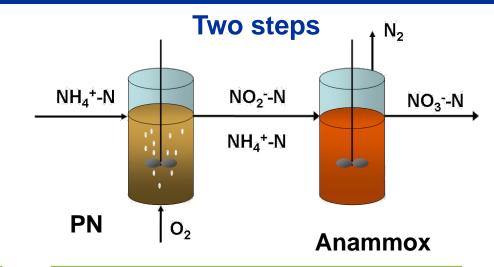
#### Biomass growth will be extremely slow

- Sequencing Batch Reactors (SBRs)
- Biofilm biomass (granules, biodiscs, moving bed with biofilm on support, fixed bed)

#### Membrane bioreactor


- Bioaugmentation (addition of Anammox from a reactor operating near optimum conditions: ¿sidestream?)
- Concentration techniques: hydrocyclone

Athens, May 29, 2015


9



## 5. One-step vs two-steps systems



- Lower investment costs
- More simple
- Avoids high nitrite concentrations and reduces NOx emissions
- Affected by inhibition by remaining organics
- Variability of the influent can affect stability
- Might have lower removal rates



- Better to avoid inhibition by remaining organic compounds
- Copes well with variability of the influent
- Easier to optimise each process
- Higher investment costs
- Complexity, need for advanced control
- Possible high nitrite concentrations and NOx emissions

Industrial Waste & Wastewater Treatment & Valorisation

10



### 5. One-step vs two-steps systems

Industrial

Waste & Wastewater

**Treatment & Valorisation** 

#### Significant lab scale works treating municipal-like effluents

| Type of process                                                    | Aeration type                                                             | COD/N ratio      | Temperature<br>(ºC) | NRR<br>(kg N/m <sup>3</sup> d) | Ref.                         |
|--------------------------------------------------------------------|---------------------------------------------------------------------------|------------------|---------------------|--------------------------------|------------------------------|
| 3 steps for AD and<br>PN/Anammox: UAFB,<br>PN-SBR, UFBR<br>Anammox | Aeration time<br>controlled PN                                            | 5<br>(before AD) | 12-27               | 0.83                           | Gao et al.<br>2014           |
| 1 step: RBC                                                        | Not controlled, intermittent in space                                     | 2                | 14-15               | 0.53                           | De Clippeleir<br>et al. 2013 |
| 1 step: SBR                                                        | Not controlled, continuous supply                                         | 0                | 12                  | 0.02                           | Hu et al.<br>2013            |
| 2 steps: PN-CSTR,<br>MBBR Anammox (not<br>operated)                | Intermittent,<br>controlled by<br>NH <sub>4</sub> +/NO <sub>x</sub> ratio | 6.7              | 25                  | 0.15                           | Regmi et al.<br>2014         |
| 2 steps: PN (not<br>operated), UFGSB<br>Anammox                    | -                                                                         | 0.6-1            | 10-20               | 1.85 (20 ºC)<br>0.34 (10 ºC)   | Lotti et al.<br>2014         |
| 1 step: Pilot scale plug<br>flow granular reactor                  | Intermittent                                                              | 0.67 (BOD/N)     | 19                  | 0.16-0.19                      | Lotti et al.<br>2015         |

AD: Anaerobic Digestion; PN: Partial Nitritation; UAFB: Up-flow Anaerobic sludge Fixed Bed; UFBR: Up-flow Fixed-bed Biofilm Reactor; SBR: Sequencing Batch Reactor; RBC: Rotating Biological Contactor; CSTR: Continously Stirred Tank Reactor; MBBR: Moving Bed BioReactor; UFGSB: ; BOD: Biological Oxygen Demand; NRR: Nitrogen Removal Rate.



• The application of the PN/Anammox process to the main stream of the municipal and municipal-like effluents opens the possibility for the self sufficient or energy generating WWTP

• This highly desirable result has fueled the research towards that implementation of the PN/Anammox process

 Significant advances have been obtained to overcome the main limitations, focusing on COD removal and C energy recovery, advanced control systems, improved biomass retention and other issues

• Despite all the research effort, the application of PN/Anammox to municipal wastewater is still not a mature technology, so it will continue being a hot research topic in the future

Athens, May 29, 2015



A critical review of the future trends and perspectives for the implementation of Anammox in the main line of municipal WWTPs





I. Fernández\*, J. Dosta, J. Mata-Álvarez isaac.fernandez@ub.edu

