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Figure 1. Bioprocess development based on porous DCs of Indian origin
sawdust (b) Rice husk, and (c) Sal sawdust 
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The need for innovative and sustainable technologies in food bioprocessing has brought upon a great interest 
the use of cheap renewable resources such a waste lignocellulosics. Wood and husk are such materials that have 
been used for the production of porous cellulosics, after delignification, to design (a) natural filters for microbial 

“cold pasteurization” processes (Kumar et al 2016), and 
biocatalysts to advantage bioprocesses such as alcoholic and lactic acid fermentations (Kumar 

. Further to these studies, this investigation aims to present a comparison of textural characteristics of the 
leaves, bark sawdust, and husk of three plant species of Indian origin, i.e. Oryza sativa

Shorea robusta G. (sal tree), by chemical, porosimetry (BET), SEM, FTIR, 
analysis. Novel as well as previous data on the chemical/textural properties of the DCs are 

, 2014a,b).  

Figure 1. Bioprocess development based on porous DCs of Indian origin. SEM images of DCs
sawdust (b) Rice husk, and (c) Sal sawdust (Kumar et al 2016, 2014a,b)
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an Enraf Nonius FR590 diffractometer with CuKa radiation generation. The intensity was measured between 2θ 
of 5-60o. The crystallinity index (CI) was calculated from the heights of the 200 peak (I002, 2θ=22.6o) and the 
intensity minimum between the 200 and 110 peaks (Iam, 2θ=18o). I002 represents both crystalline and 
amorphous material, whereas Iam represents the amorphous material. 
 

Table 1. Porosimetry parameters of the carbonized DCs. 
Heating 
Time (h) 

Porosimetry parameter  Rice  Mango  Sal  

Porosimetry parameters of carbonized DCs at 250 °C. 
6 BET surface (m2/g)  3.4  4.0  2.1  
6 Pore volume (cm³/g)  0.01  0.007  0.006  
6 Average pore diameter (Å)  158  156  175  

12 BET surface (m2/g)  7.2  6.1  5.3  
12 Pore volume (cm³/g)  0.3  0.15  0.008  
12 Average pore diameter (Å)  150  197  165  

Porosimetry parameters of carbonized DCs at 350 °C. 
6 BET surface (m2/g)  10.0  8.4  8.7  
6 Pore volume (cm³/g)  0.06  0.05  0.03  
6 Average pore diameter (Å)  231  199  200  

12 BET surface (m2/g)  12.2  11.3  16.2  
12 Pore volume (cm³/g)  0.07  0.04  0.2  
12 Average pore diameter (Å)  262  166  265  

 
DC extracted from sawdust and husk samples had higher cellulose content and lower hemicellulose and 

lignin contents than the original plant material. After delignification the rice husk had a 5-fold increase in surface 
area (6.6 m2/g) and at least 3-fold higher pore volume compared to mango sawdust (1.05 m2/g) and sal sawdust 
(0.6 m2/g). Therefore, delignification caused an increase of 50-110% of the BET surface. The average pore 
diameter for rice husk was in the range of 100 Å indicating in relation to pore volume, that nanopores comprise 
more than 2% of the volume of DC as compared to the non-delignified materials. Carbonization of the DCs at 
350oC for 6 and 12 h showed higher increase in the BET surface in the range 10-16 m2/g; but with increase in 
BET surface there was a decrease in the mechanical strength of the material. The texture was similar to charcoal 
but more brittle in touch and more easily dissolved when in contact with liquid media. The results derived from 
the FTIR and NMR analyses confirmed that lignin and most of the hemicellulose were removed during the 
chemical process. The crystallinity of the extracted DCs was higher than that of the non-delignified samples.  

The DCs were successfully used as biofilters for cold pasteurization of liquid foods at 4oC (Kumar et al 
2016). The efficiency of the mango and sal DC was higher than the rice husk DC in all cases. The microbial 
removal load ranged from 80-100% for yeasts and 70-90 % for bacteria. Furthermore, novel biodegradable 
composite materials based on the DCs and microbial polymers (PLA, PHB), were prepared and successfully 
used as cell immobilization carriers in lactic acid and alcoholic fermentations (Kumar et al 2014a). In both cases, 
and both types of biocatalysts (plain or composite DCs), improvements were observed compared to free cells 
systems. The results of this study, show that the DCs have increased porosity characteristics after the 
delignification process, depending on their plant origin, and may be more suitable for bioprocessing such as cold 
pasteurization, enzyme storage carriers and immobilized cell biocatalysts. The delignification is necessary to 
remove lignin, which may be toxic to microorganisms, leave undesirable residues and cause discoloration in the 
target food products. Taking into account that the Greek wheat straw, used in a previous similar study (Koutinas 
et al 1981), contains 16% total lignin instead of 41.4% it is obvious that delignification of mango sawdust will 
lead to a material with increased porosity and therefore higher specific surface area as compared with straw. This 
work also indicates the potential of the DCs and carbonized DCs as nano/microporous adsorbent materials for 
water treatment, dyes, heavy metals and other toxic chemicals in industrial effluents. 
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