6th International Conference on Sustainable Solid Waste Management

13-16 June 2018 Naxos, Greece

Unravel the structure and reactivity of wood and biowaste biochars

Professor Ange Nzihou

RAPSODEE Research Center, CNRS, IMT Mines Albi, France

Research field: Alternative feedstocks to energy and multifunctional materials

My group: 16 persons (4 faculties + 8 PhDs and 4post-docs)

- I. Biochar production and utilisation
- II. Biochar characterisation and properties
- III. Some applications as ceramics for environmental remediation
- IV. To take home

I. Biochar production and utilisation

Thermochemical conversion - range of applications

Drying

A dehydration with the release of light hydrocarbons

 $\Delta H_{v(H2O)} = 2.3 \text{ MJ/kg at } 100^{\circ}\text{C}$

Torrefaction

a mild form of pyrolysis dedicated only for biomass conversion. Torrefaction leads to obtaining dry product with higher energy content. Main product is biocoal - yield between 70 and 80%

BIOCOAL

MT pyrolysis

300 - 550°C

enables chemical conversion of products like biomass, plastic, or rubber into a solid, liquid or gas phase. Enables valorization to biooil and biochar. Yield of biooil ranges from 30 to 60%.

Yield of biochar 25 to 35%

BIOOIL. **BIOCHAR**

13 < Biooil (MJ/kg) < 27

HT pyrolysis & gasification

conversion most of the feedstock into methane-rich syngas which can be valorized into energy by using it CHP unit or steam boiler. Yield of syngas ranges from 50 and 95%

12 < Syngas (MJ/kg) < 20

LHV (Low heating value): 8 < Biocoal (MJ/kg) < 22

Reference: LHV H2= 120 MJ/kg LHV CH4= 50 MJ/kg LHV MSW=10 MJ/kg Biochar (MJ/kg) < 32

Energy I. Biochar production and utilisation Fuel cells

photovoltaic Supercapacitors

Some current utilisations

Environment

Carbon sequestration CO₂ Storage Sensors

Carbon fibers
Nanotubes

Agronomy

Water retention Plant nutrients Soil conditioner

Composites

Reinforcing materials in polymer composites. Biocomposites

Other uses

Biomedical use Pharmaceutical

I. Biochar production and utilisation

II. Biochar characterisation and properties

III. Some applications as ceramics for environmental remediation

IV. To take home

Raw biomass composition

Three tropical biomasses were selected from different agro wastes—

Inorganic composition

Macromolecular composition

- Oil palm shells and Coconut shells are endocarps with high lignin content
- ✓ Si is the most important inorganic constituent of Bamboo guadua
- ✓ **K** is the most important inorganic constituent of Coconut shells

- Disordered structure

BIOCHAR 700°C

HRTEM

BIOCHAR 400°C

Bright field TEM - nanopores

Surface functions determination

TPX (R, O, D)

TPR: reductible species

TPO: oxidable species

TPD: active sites

Chimisorption: dispersion of metals

Titration: acidic and basic sites

Temperature Programmed Desorption (TPD): Thermal desorption spectrometer

Surface functions determination

Temperature Programmed Desorption (TPD)- Gas chromatography

- I. Biochar production and utilisation
- II. Biochar characterisation and properties

III. Some applications as ceramics for environmental remediation

IV. To take home

III. Some applications as ceramics for environmental remediation

Clay biochar Composites

- Filters for polluted gas
- Filters for effluents treatment
- Sensors for pollutants removal

III. Some applications as ceramics for environmental remediation

Wastewater treatment: Denitrification

Sample	Total porosity (%)	Open porosity (vol.%)	Permeability (mD)	Specific surface area (m²/g)
CWF	34	27	23	0.9
CWF+ 20wt.% biochar	57	52	43	194.7

Data obtained using water absorption (porosity), mercury intrusion porosimetry (permeability) and nitrogen adsorption analysis using the BET method (specific surface area))

Contaminants (nitrate), adhesion forces and capture efficiency of the ceramic water filter (CWF).

Data obtained using chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS)

III. Some applications as ceramics for environmental remediation

Wastewater treatment: Removal of heavy metals

Dependence of the cadmium capture efficiency of the clay ceramic

- I. Biochar production and utilisation
- II. Biochar characterisation and properties
- III. Some applications as ceramics for environmental remediation

IV. To take home

IV. To take home

- ✓ Carbonaceous materials such as biochar can derive from renewable resources such as Biomass and Biogenic waste
- ✓ Can be used as a product itself or as an ingredient within a blended product, with a range of potential applications as ceramics

- Renewable nature
- Cost effectiveness
- ✓ Tunable: reactivity, thermal and mechanical stability
- ✓ Well adapted for developing Countries

BIOCHAR: A tunable and multi-functional material

ACKOWLEDGEMENTS

Thank you to my research group and international colleagues:

Thank you to Maria and Kostas for the invitation and for the PARTICULAR CARE.