Use of recovered resources in construction industry:
cellulose fibres from urban wastewater
Valorization of by-products in building materials:
cellulose fibres from urban wastewater
S. Palmieri1, C. Giosuè1, A. L. Eusebi1, N. Frison2, F. Fatone1, F. Tittarelli1,3

1Department of Materials, Environmental Sciences and Urban Planning - SIMAU, Università Politecnica delle Marche – Research Unit INSTM, Ancona, 60121, Italy
2Department of Biotechnology, University of Verona, Verona, 37129, Italy
3Institute of Atmospheric Sciences and Climate, National Research Council (ISAC-CNR), Bologna, 40129, Italy

Keywords: Recovered Cellulose Fibres, Mortar, Mechanical Resistance, Water Absorption, Moisture Buffering Capacity.

Presenting author email: s.palmieri@pm.univpm.it

Introduction: In water purification implants some products as cellulose fibres are commonly recovered. Cellulose fibres from toilet paper are collected into the sieves and they are a problem for wastewater treatment because of their insolubility in water (Ruiken et al., 2013). Generally cellulose is used as a reinforcing component in a wide range of applications, from structural to biomedical (Huber et al., 2012, 2016). Recently, the use of renewable natural cellulosic materials, such as wood, plants, and waste paper in the preparation of building materials has attracted significant interest for their advantageous properties, low environmental impact and low cost. In fact, building sector consumes the 40% of world total energy (Kockal, 2016). Concrete and mortars are the most important materials in buildings and the use of recovered materials can help to reduce waste and increase energy efficiency promoting the concept of sustainability (Dittenber and Gangarao, 2012, Senff et al., 2018). The aim of this paper is to investigate the influence of recovered cellulosic fibres (added at the amount of 5%, 10%, 15% and 20% by mix volume) on the properties of hydraulic lime based mortars.

Materials and methods: Mortars were prepared mixing Natural Hydraulic Lime (NHL) 5 with calcareous sand (Dmax = 400 µm) as aggregate (CA400), water and, if present, recovered cellulose fibres (CREC). Mixes have the same water-NHL and aggregate-NHL ratio equal to 0.65 and 3 by weight, respectively. The reference (REF) has 0% in volume of cellulose, the other specimens have an increasing amount of cellulose on the total volume of mix equal to 5%, 10%, 15% and 20%. Specimens are labelled as CREC 5%, CREC 10%, CREC 15% and CREC 20%, respectively.

Table 1 Mix design

<table>
<thead>
<tr>
<th>Density g/cm³</th>
<th>Water 1.00</th>
<th>NHL5 2.65</th>
<th>CA400 2.65</th>
<th>CREC 0.75</th>
<th>Slump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>g</td>
<td>294</td>
<td>467</td>
<td>1401</td>
<td>0</td>
</tr>
<tr>
<td>CREC 5%</td>
<td>g</td>
<td>280</td>
<td>445</td>
<td>1335</td>
<td>22</td>
</tr>
<tr>
<td>CREC 10%</td>
<td>g</td>
<td>267</td>
<td>424</td>
<td>1274</td>
<td>42</td>
</tr>
<tr>
<td>CREC 15%</td>
<td>g</td>
<td>256</td>
<td>406</td>
<td>1218</td>
<td>60</td>
</tr>
<tr>
<td>CREC 20%</td>
<td>g</td>
<td>245</td>
<td>389</td>
<td>1168</td>
<td>77</td>
</tr>
</tbody>
</table>

Fresh behaviour of mortars in terms of workability was estimated by flow table test in accordance to standard (UNI EN 1015-3:2007). Density of mortars was calculated after 28 days of curing using weight and dimensions of the specimen. Morphological observations were conducted with SEM on fibres (Figure 1a) and mortars (Figure 1b). Mercury Intrusion...
Porosimetry (MIP) was performed to measure the total porosity of mortars. Mechanical resistance in terms of flexural and compressive strengths were tested according to UNI EN 1015:11:2007. A simplified version of NORDEN TEST was performed to evaluate the Moisture Buffering Value (MBV).

Results and Discussion: All mortars have the same stiff workability (according to UNI EN 1015-6:2007). SEM observation of mortars confirms the good dispersion of cellulose fibres in the matrix (Figure 1b). The increased volume of fibres implies a reduction in density (Figure 2a) and compressive strength (Figure 2b) from 46% to 100% compared to reference without fibres, owed to the lower density of cellulose and the increased volume of pores (Figure 2c). Despite this, flexural strengths (R_{max}) of mortars increase gradually with the increase of fibres percentage, up to 205% for CREC20% (1.05 MPa) (Figure 2b). This is due to the optimal Interfacial Transition Zone (ITZ) between cellulose fibres and the binder paste as shown in Figure 1c. The increase in cellulose implies a positive increase in MBV as shown in Figure 2d since the higher the porosity of mortars, the higher the moisture penetration depth (Giosuè et al., 2017); moreover cellulose fibres, thanks to their molecular structure, tend to adsorb and release water vapour.

![Graphs showing density, flexural and compressive strengths, and MBV of mortars with different cellulose contents.](image)

Figure 2 a) Correlation between density of different mortars and CREC’s volume; b) Correlation between R_{max} (flexural and compressive) of different mortars and CREC’s volume; c) Total accessible porosity of different mortars; d) MBV of different mortars.

Conclusion: The inclusion of recovered cellulose fibres from urban wastewater, despite a reduction in compressive strengths, can lead to an improvement of the final performances of mortars, in terms of decreased density and increased flexural strength and MBV, together with a viable technological solution for waste management.

References: