Enabling decentralized pre-composting of organic household waste with a novel high-rate bioreactor

The Urban pre-Composter

M. Sakarika, R. Baetens, K. Vinck, M. Spiller, K.C. Vrancken, G. Van Barel, E. Du Bois, S.E. Vlaeminck

Fate of organic household waste in Flanders

[Reference period: 2015]

(Roels et al., 2017)

Cost breakdown composting

[Reference period: 2009]

Urban household organic waste composition

- Household organic waste: vegetables, green, fruit (VGF)
- Urban household organic waste: mainly kitchen waste
- Composition of waste disposed in the collection points of the Flanders:

Conventional organic waste flow

Mobility problems (traffic)

Air pollution

Odor

Noise

Novel organic waste flow with the **Urban pre-Composter**

Goal: max. mass and volume reduction in 2 weeks

Challenges in composting kitchen waste

Research objectives

- 1. Develop a prototype Urban pre-composter and validate achievable mass and volume reduction of kitchen waste
- 2. Extrapolate to efficiency gains in the overall kitchen waste treatment (pre-composting + main composting)
- 3. Characterize final compost quality

Reactor design

- Continuous loading drum bioreactor with forced aeration and internal agitation
- Capacity: kitchen waste from 44 persons (4.5 L/person)

Agitator design

Urban pre-composter performance

	Run 1	Run 2	Run 3	Run 4
Kitchen waste	Formulated			Real
Sawdust	No	Yes		No
Agitator design				

Water balance

- Minor water removal from leaching
- Moisture content 56-75% \rightarrow above 55%, so no need for moistening³

Leachate generation

- Low amounts of leachate
- Can be added to compost (negligible moisture content increase 0.8-1.1%) \rightarrow no separate collection
- Upscaling: trade-off between energy use (aeration; evaporation) and leachate production

Research objectives

- 1. Develop a prototype Urban pre-Composter and validate achievable mass and volume reduction of kitchen waste
- 2. Extrapolate to efficiency gains in the overall kitchen waste treatment (precomposting + main composting)
- 3. Characterize final compost quality

Overall treatment: pre-composting + main composting

- High-rate conversions during pre-composting
- 42% and 71% of overall mass and volume reduction potential achieved in 21% of the time

Research objectives

- 1. Develop a prototype Urban pre-Composter, and validate achievable mass and volume reduction of kitchen waste
- 2. Extrapolate to efficiency gains in the overall kitchen waste treatment (pre-composting + main composting)
- 3. Characterize final compost quality

Compost quality

Parameter	Unit	Produced compost	VGF compost composition ⁴	Requirements for solid organic fertilizers ⁵
Total solids (TS)	%g _{TS} /g _{product}	26.8	70	>40
C/N	-	11.8	12	<15
N	%g _N /g _{product}	0.85	1.2	2.5
Р	%g _P /g _{product}	0.13	0.13	0.44
K	%g _K /g _{product}	0.07	0.42	0.83
N/P/K	-	1/0.15/0.08	1/0.11/0.35	1/0.18/0.33

- Final moisture removal is needed
- C/N ratio indicates near mature compost after 68 days
- Good N/P ratio

Conclusions

- Successfully demonstration of the effectiveness and feasibility of urban pre-composting at semitechnical scale (200L)
- No bulking agent addition, no need for separate leachate collection → no additional cost for logistics and management
- 42% and 71% of the overall mass and volume reduction potential achieved in 14 days
- The urban pre-composter lowers overall costs of organic waste management

Thank you for your attention!

<u>Myrsini.Sakarika@UAntwerpen.be</u> – <u>Siegfried.Vlaeminck@UAntwerpen.be</u>

Back-up slides

Neighborhood level waste collection

Sorting streets for 400 persons (250 families)

Composting of real kitchen waste

Mimicking of realistic feeding (fed-batch) → not full reduction potential (compared to batch process)