

NAXOS 2018

6th International Conference on Sustainable Solid Waste Management

Sludge Management

Dynamic adsorption behaviors of Pb²⁺ under complex conditions in biochar fixed-bed system: breakthrough curve characteristics and parameters

Zehua Ji Yuansheng Pei

Beijing Normal University

2018.06.15

1. Introduction

In recent years the metallic lead, lead alloys and lead compounds had been widely applied in storage battery, machine building, shipbuilding, light manufacturing, radiation protection, etc.

Natural water body have been heavily contaminated by lead wastes in the application of lead. Consequently, the treatment and disposal for lead pollution have been the focal and heated point in the field of water environment protection.

These several years, the production of activated sludge was increased with the increasing of population and water consumption in the proceeding of urbanization. Previous investigations have shown that the activated sludge can be used as crude material for adsorption of pollutants through carbonization.

1. Introduction

Position of mine

In the smelting, processing and treatment procedure of ore, the combined action of **lead** and **zinc** is prerequisite to be taken into account.

Meanwhile, the mining is always located in the remote region in general near to agriculture area. The local natural water body is readily influenced by the mining, processing and transportation procedure of heavy metal.

Based on the requirement of agricultural production, **nitrogen fertilizer** (NH_4NO_3 , NH_4HCO_3 , etc.) and **phosphate fertilizer** ($Ca(H_2PO_4)_2$, $Ca_3(PO_4)_2$, etc.) were widely applied to the fields. But a majority of fertilizer were not fully utilized and finally leached to local water, which led to serious water pollution.

consideration of In all aforementioned situation, in order to ascertain the actual treatment efficiency of target contaminant, and clarify the interrelationship between different contaminants, it is necessary to research the actual removal effect of Pb²⁺ complex under the environment containing **pH**, zinc, ammonia nitrogen and **phosphorus**.

1. Introduction Sludge-based biochar(SBB)

In this study, fixed-bed system was constructed by glass columns packed with SBB. The effect of Zn^{2+} , NH_4^+ , $H_2PO_4^-$ and their combined systems on fixed-bed adsorption preference for Pb²⁺ ion were studied. The main objective of this study was to determine the adsorption behaviors of Pb²⁺ in fixed-bed under **complex environment**.

2. Materials and methods

Investigated system	adsorbed	
System	co-existence ions concentration	(q _d , mn capacity
1)Pb ²⁺	pH=3.0 pH=4.5 pH=6.0	(<i>H,</i> cm) zone (<i>R</i> , %):
2)Pb ²⁺ -Zn ²⁺	0.5 1.0	fixed-bec <i>t</i> , and
3)Pb ²⁺ -NH ₄ +	0.5 1.0	breakthro
4)Pb ²⁺ -H ₂ PO ₄ -	0.5 1.0	$\frac{1}{C_{t}/C_{0}=9}$
5)Pb ²⁺ -Zn ²⁺ -NH ₄ ⁺ 6)Pb ²⁺ -Zn ²⁺ -H ₂ PO ₄ ⁻ 7)Pb ²⁺ -NH ₄ ⁺ -H ₂ PO ₄ ⁻ 8)Pb ²⁺ -Zn ²⁺ -NH ₄ ⁺ - ₂ PO ₄ ⁻	1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0/1.0	were p adsorpti
		—

(<i>M</i> _{ad} , mmol): total mass of Pb ²⁺ ion
adsorbed by fixed-bed
(q _d , mmol/L): dynamic adsorption
capacity
(H, cm): height of mass transfer
zone
(R, %): total metal removal rate of
fixed-bed
$t_{\rm b}$ and $t_{\rm e}$ are the time (min) of
breakthrough point $(C/C = 10\%)$ and

exhaustion (saturation) point $(C_t/C_0 = 10\%)$ and $(C_t/C_0 = 95\%)$

Two fixed - bed adsorption models were proposed to simulate the adsorption dynamic processes:

Thomas model

Yoon-Nelson model

3. Results and Discussion

3.1 Breakthrough curve of Pb²⁺ ion adsorption process under different pH

Figure 1 The breakthrough curves and parameters of Pb²⁺ ion in fixed-bed adsorption

	system under impact of pn.										
pH	$t_{\rm b}/({\rm min})$	$t_{\rm e}/({\rm min})$	$M_{\rm ad}/({\rm mmol})$	$M_{\rm tatol}/(\rm mmol)$	$q_{\rm d}/({\rm mmol/g})$	<i>H</i> /(cm)	R/%				
3.0	22.13	169.99	0.1659	0.4309	0.0553	27.11	38.51				
4.5	18.30	217.13	0.1915	0.5504	0.0638	31.59	34.79				
6.0	16.92	232.37	0.2195	0.5891	0.0732	29.86	37.26				

3. Results and Discussion

3.2 Breakthrough curve of Pb²⁺ ion adsorption process under different contaminants

Table 2 The breakthrough curve parameters and variations of Pb ²⁺ under impact of Zn ²⁺ , NH ₄ ⁺ , and H ₂ PO ₄ ⁻											
System	co-existence ions concentration/ mmol/L	t _b / min	t _e / min	$M_{ m ad}/$ mmol	$M_{ m tatol}/$ mmol	R/ %	$\Delta t_{\rm b}/$ min	$\Delta t_{\rm e}/$ min	$\Delta M_{ m ad}$ /mmol	$\Delta M_{ m tatol}/$ mmol	∆ <i>R</i> / %
Pb ²⁺	-	18.30	217.13	0.1915	0.5504	34.79	-	-	-	-	-
$Dh^{2+} 7n^{2+}$	0.5	13.98	169.12	0.1855	0.4287	42.07	-4.32	-48.01	-0.0060	-0.1217	7.28
$Pb^{2+}-Zn^{2+}$	1.0	6.90	150.06	0.1546	0.3804	39.52	-11.40	-67.07	-0.0369	-0.1700	4.73
Pb ²⁺ -NH ₄ ⁺	0.5	6.33	192.56	0.1893	0.5297	35.73	-11.97	-24.57	-0.0022	-0.0207	0.94
	1.0	6.08	129.82	0.1582	0.3571	44.29	-12.22	-87.31	-0.0333	-0.1933	9.50
Pb ²⁺ -H ₂ PO ₄ -	0.5	5.64	158.27	0.1024	0.4354	23.51	-12.66	-58.86	-0.0891	-0.1150	-11.28
	1.0	5.13	167.43	0.1405	0.4606	30.50	-13.17	-49.70	-0.0510	-0.0898	-4.29
Pb ²⁺ -Zn ²⁺ -NH ₄ ⁺	1.0/1.0	3.34	132.34	0.0778	0.3641	21.37	-14.96	-84.79	-0.1137	-0.1864	-13.42
Pb ²⁺ -Zn ²⁺ -H ₂ PO ₄ -	1.0/1.0	2.85	121.55	0.0364	0.3344	10.88	-15.45	-95.58	-0.1551	-0.2160	-23.91
Pb ²⁺ -NH ₄ ⁺ -H ₂ PO ₄	- 1.0/1.0	4.07	148.98	0.1087	0.4098	26.53	-14.23	-68.15	-0.0828	-0.1406	-8.26
$Pb^{2+}-Zn^{2+}-NH_4^+-H_2P$	O ₄ - 1.0/1.0/1.0	2.40	126.93	0.0626	0.3492	17.92	-15.90	-90.20	-0.1289	-0.2012	-16.87

3.2 Breakthrough curve of Pb²⁺ ion adsorption process under different contaminants

-igure 4 The dynamic adsorption capacity (q_d) of fixed-bed in different systems

Dynamic adsorption capacity (q_d) and the height of mass transfer zone (*H*) represent the adsorption performance of unit mass and unit volume, respectively, and they can be used to describe the adsorption capacity of fixed-bed.

Contrast study of q_d and H under the effect of different factors is help to better understand the quantitative influence of contaminations on fixedbed system.

By comparing the Figure 4 and 5, the results indicated that the variation of *H* showed **opposite tendency** to that of q_d in the corresponding systems, and the fixed-bed need more adsorbent to adsorb unit mass Pb²⁺ ion in the effect of multiple contaminations.

But under the $Pb^{2+}-NH_4^+-H_2PO_4^$ system, compared to the other ternarysolute and quarternary-solute solutions, the *H* and q_d showed distinct advantage. In this situation, the inhibition effect on SBB was minimal.

This result demonstrated that the simultaneous treatment of Pb^{2+} , NH_4^+ , and $H_2PO_4^-$ in fixed-bed system maybe a viable method.

Table 3 The parameters of Thomas model and Yoon-Nelson model								
System	co-existence ions	Tł	nomas moc	lel	Yoon-Nelson model			
	concentration	K _{Th}	$q_{ m md}$	<u>R</u> ²	$K_{\rm YN}$	τ		
	pH=3.0	0.0301	0.0391	0.9738	0.0314	69.55	0.9396	
Pb ²⁺	pH=4.5	0.0225	0.0522	0.9788	0.0275	95.50	0.8403	
	pH=6.0	0.0185	0.0636	0.9704	0.0185	77.55	0.9485	
$Pb^{2+}-Zn^{2+}$	0.5	0.0234	0.0330	0.9205	0.0293	74.54	0.9515	
	1.0	0.0217	0.0093	0.9253	0.0341	63.98	0.7990	
	0.5	0.0197	0.0370	0.8678	0.0279	79.32	0.7918	
PO^{-1} - $N\Pi_4^{-1}$	1.0	0.0344	0.0281	0.9197	0.0341	54.00	0.8767	
Pb ²⁺ -H ₂ PO ₄ -	0.5	0.0256	0.0243	0.9097	0.0287	46.81	0.8925	
	1.0	0.0262	0.0396	0.9216	0.0366	78.08	0.8633	
Pb ²⁺ -Zn ²⁺ -NH ₄ ⁺	1.0/1.0	0.0202	0.0085	0.8813	0.0244	25.75	0.7853	
Pb ²⁺ -Zn ²⁺ -H ₂ PO ₄ ⁻	1.0/1.0	0.0333	0.0035	0.8729	0.0379	26.58	0.7658	
Pb ²⁺ -NH ₄ ⁺ -H ₂ PO ₄ ⁻	1.0/1.0	0.0266	0.0235	0.8941	0.0272	42.55	0.8867	
$Pb^{2+}-Zn^{2+}-NH_4^+-H_2PO_4^-$	1.0/1.0/1.0	0.0280	0.0053	0.8750	0.0286	8.72	0.8323	

4. Conclusion

1) The inhibition effect of three categories contaminates on Pb²⁺ adsorption follow the order as $NH_4^+>Zn^{2+}>H_2PO_4^-$. The complicate contaminations system lead to fixed-bed adsorption performance degradation.

2) When $H_2PO_4^-$ ion exist in ternary or quaternary system, it depressed the inhibition effect of component systems on Pb²⁺ adsorption. And the systems containing Zn²⁺ showed the most significant impact on the breakthrough curves among all combinations,

3) In compared with Yoon-Nelson model, Thomas model can be better used to described the Pb²⁺ adsorption process in fixed-bed system, whereas, the application result was drastically affected by co-existing contaminations.

