Study of the crystallisation reaction behaviour to obtain struvite

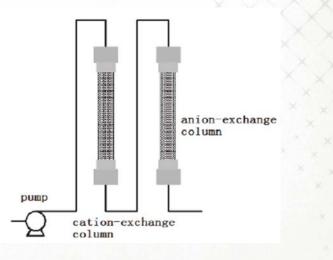
F. Corona, D. Hidalgo, J.M.Martín-Marroquín, S. Sanz-Bedate, G. Antolín

Naxos, 15th June 2018

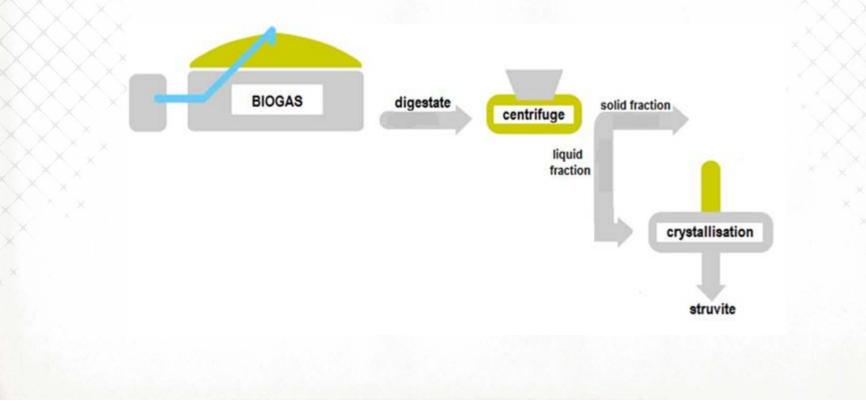
Francisco Corona Encinas M.Sc.

Introduction

- The wide application of anaerobic digestion for the treatment of organic waste streams results in the production of **high quantities of anaerobic effluents**.
- Such effluents are characterised by high nutrient content (N and P).
- Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries.


Introduction

- There are several technologies for digestate processing:
 - Membrane technologies.
 - Evaporation.
 - Stripping.
 - Ion exchange.
 - × Struvite precipitation.



Introduction

- Struvite precipitation is one of the most promising digestate treatment techniques.
- Unlike other techniques, not only digestate is treated, but also recovery of nutrients present in digestate is carried out.

Introduction

Ammonium and phosphate can be **removed** from the digestate by precipitation of **struvite**, also known as MAP (ammonium magnesium phosphate).

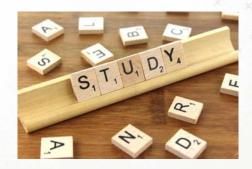
 $Mg^{2+} + NH_4^{+} + PO_4^{3-} + 6H_2O \implies MgNH_4PO_4 \cdot 6H_2O$

The resulting struvite is a good fertiliser because nitrogen, phosphorus and magnesium are valuable nutrients for plants.

Introduction

- The struvite crystallisation reaction yield is influenced by various parameters:
 - Phosphorus, nitrogen and magnesium concentrations in the reaction medium.

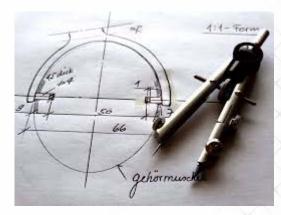
Nitrogen


14 007

Magnesiun

- pH.
- Temperature.
- Reaction time.
- Strirring rate.
- Presence of foreign ions.

So it is necessary to **study** the **most important parameters** to have a correct understanding of the crystallisation reaction mechanism.

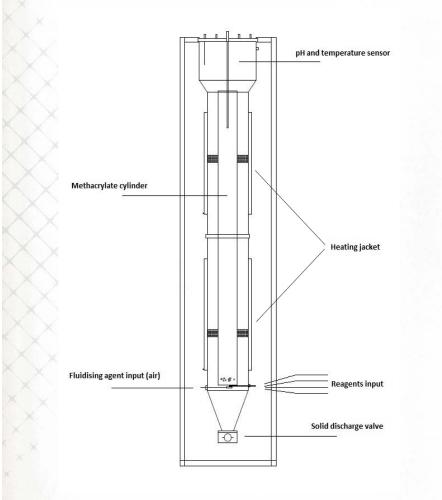

Phosphorus

Design of the experiments

An **experiment design** was carried out that allowed the number of experiences to be reduced to a minimum without losing relevant information.

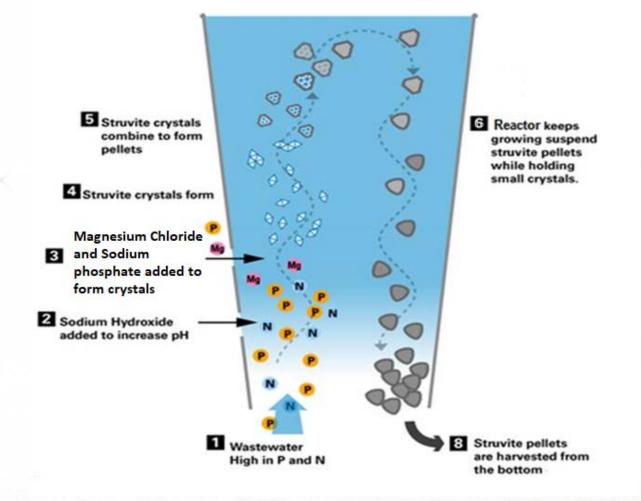
Factors		Levels	
Mg/P molar ratio	1.0	1.5	2.0
N/P molar ratio	4.0	8.0	12.0
Air flow rate (NL/min)	2.0	6.0	12.0
Reaction time (h)	0.5	1.0	2.0

- Mg and P concentrations are expressed in molar ratios to facilitate comparison of experiments.
- **Fluidised bed reactor** was used. The stirring speed is given by the flow rate of the fluidising agent (air).
- All the experiments were carried out at a temperature of 25 °C and a pH value of 9.0.

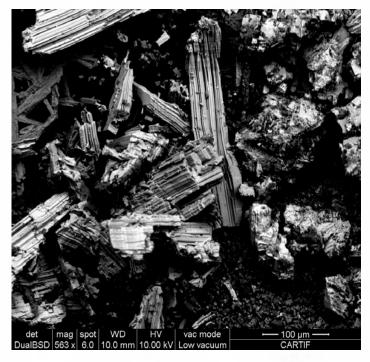

Design of the experiments

From the definition of the factors to be studied and the levels of these, the orthogonal matrix L₉ was obtained according to the Taguchi methodology.

Exp. number	Mg/P ratio	N/P ratio	Air flow rate (NL/min)	Reaction time (h)
1	1.0	4.0	2.0	0.5
2	1.0	8.0	6.0	1.0
3	1.0	12.0	12.0	2.0
4	1.5	4.0	6.0	2.0
5	1.5	8.0	12.0	0.5
6	1.5	12.0	2.0	1.0
7	2.0	4.0	12.0	1.0
8	2.0	8.0	2.0	2.0
9	2.0	12.0	6.0	0.5

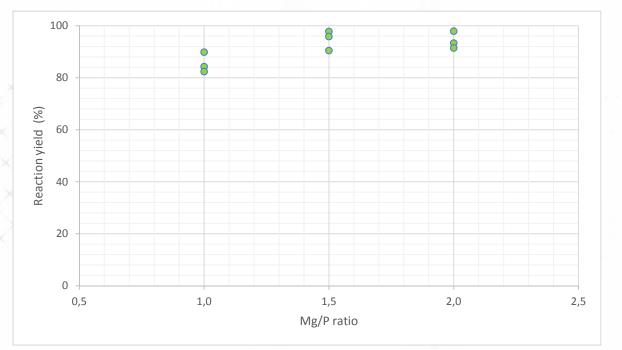

The experiments were conducted in duplicate.

Crystallisation fluidised bed reactor


- **50** L reactor made of borosilicate glass with a cylindrical shape.
- Internal diameter of 20 cm and a total height of 2 m (L/D =10).
- Magnesium chloride (MgCl₂·6H₂O) was used as Mg source.
- Sodium phosphate (NaH₂PO₄·12H₂O) was used as P source.
 - The pH of the samples was 8.5, so it was necessary to add a **concentrated alkali** (50% NaOH solution) to raise the pH value to 9.0.

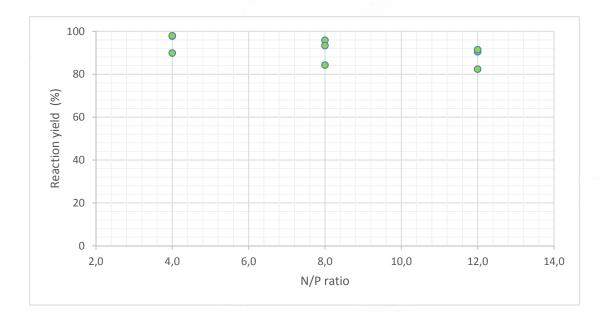
Crystallisation reaction

Crystallisation reaction


A Scanning Electron Microscope (SEM) image of the struvite crystals obtained in this study.

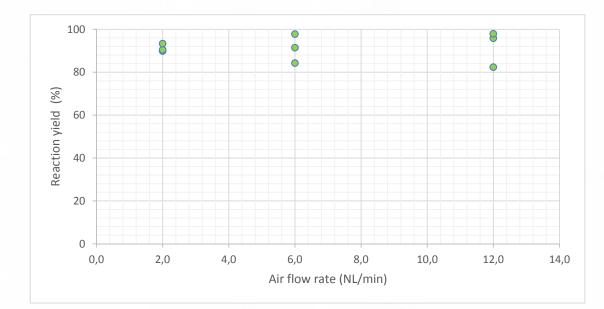
As can be seen, the crystals obtained have the characteristic shape of struvite crystals (needle-shaped crystals).

Results



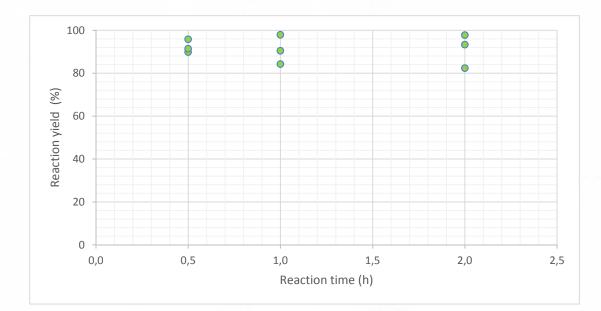
The **reaction yield** generally **increases** with the increase in the **Mg/P** ratio. However, the reaction yields are **very similar** when Mg/P ratios of **1.5** and **2.0** are used.

Results


Influence of P on reaction yield.

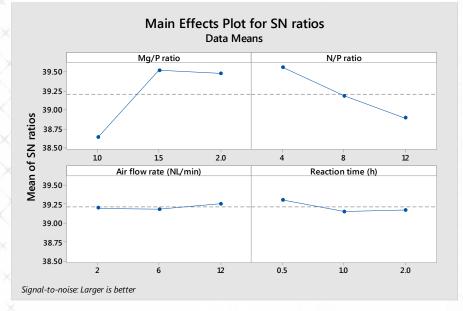
There is an **inverse** relationship between the **reaction yield** and the **N/P** ratio. As the value of the N/P ratio increases, the reaction yield decreases.

Results


Influence of **fluidising air flow rate** on reaction yield.

With some exceptions, the crystallisation reaction yield increases as the air flow rate increases.

Results


Influence of reaction time on reaction yield.

The reaction yield increases as the reaction time increases. However, the differences in reaction yield are very small for 1.0 h and 2.0 h.

Results

The effect of the process parameters was analysed by Taguchi methodology using **Signal to Noise ratio** (S/N) method.

- The parameters that had the **greatest influence** on the struvite crystallisation reaction yield were: **Mg** and **P concentrations**.
- Air flow rate and reaction time had little influence on the reaction yield.

Conclusions

- **Concentrations** of **Mg** and **P** in the reaction medium are the parameters that have the **greatest influence** on the struvite crystallisation reaction yield. The higher concentrations of Mg and P, the higher the reaction yield. Therefore, the optimum **Mg/P** and **N/P** ratio levels are **1.5** and **4.0** respectively.
- Air flow rate of the fluidising agent is the parameter that has the least influence on the reaction yield. Therefore, moderate air flows would be sufficient for a correct development of the struvite crystallisation reaction.
 - **Reaction time** has **little influence** on the crystallisation reaction. Therefore, reaction times between **0.5** and **1.0** hour are sufficient to achieve high reaction yields.
 - Struvite crystallisation reaction in **fluidised bed reactors** generally achieves **better results** (higher efficiencies) than in **mechanical stirring reactors**.

Future works

- Study the **growth rate** of struvite crystals.
- **Optimise** struvite crystallisation reaction by **continuous operation**.
- Field tests of struvite to check its properties as a slow-release fertiliser.

Thank you for your attention

This work was supported by the Agencia de Innovación, Financiación e Internacionalización Empresarial de Castilla y León (project: Economía circular en el sector agroalimentario).

Agencia de Innovación, Financiación e Internacionalización Empresarial

If you have any question, do not hesitate to contact me

[TECNOLOGICO] CARTIF www.cartif.es

More information:

Fundación CARTIF Parque Tecnológico de Boecillo, 205 47151- Valladolid (SPAIN) Tel. +34 983 546504 Fax +34 983 546521 e-mail: fraenc@cartif.es Francisco Corona Encinas M. Sc.