Citrus peel waste valorization through a biorefinery strategy for the production of succinic acid, ethanol, methane and fertilizer

M. Patsalou, E. Protopapa, S. Stavrinou, A. Chrysargyris, N. Tzortzakis, I. Vyrides, M. Koutinas

1Department of Environmental Science & Technology, Cyprus University of Technology
2Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology

6th International Conference on Sustainable Solid Waste Management
From Oil Refineries to Bio Refineries

Oil Refinery:
- Fuels
- Solvents
- Chemical intermediates
- Plastics
- Fibers
- Specialty chemicals
- Oils

Biorefinery:
- Fuels
- Solvents
- Chemical intermediates
- Plastics
- Natural fibers
- Specialty chemicals
- Oils
- Food

6th International Conference on Sustainable Solid Waste Management, NAXOS 2018
Citrus Fruits

- 121 x 10^6 tons global citrus production
- 25 x 10^6 tons citrus peel waste

- 50% of the fruit is peel waste
 - Peels
 - Seeds
 - Segment membranes
Current Practice

- Animal feed
- Disposal in landfills

Composition of peel

42.50% pectin
16.90% soluble sugars
10.50% hemicellulose
9.21% cellulose
20.89% others

0.5% essential oils

6th International Conference on Sustainable Solid Waste Management, NAXOS 2018
Fermentation Products

Succinic acid
- Di-carboxylic acid
- Important biobased platform chemicals
- High theoretical yield
- Environmental friendly impact
- *Actinobacillus succinogenes*

Ethanol
- Biofuel
- *Pichia kudriavzevii KVMP10*
- *Kluyveromyces marxianus*
- *Saccharomyces cerevisiae*
Valorization of CPW

Extraction Products

Essential oils
- Antimicrobial agent
- Food
- Medicines
- Flavorings

Pectin
- Food industries
- Pharmaceutical industries

Side Products

Methane
- biofuel

Fertilizer

6th International Conference on Sustainable Solid Waste Management, NAXOS 2018
Process Flow Sheet of CPW Biorefinery

Citrus peel waste → Extraction of essential oils

Dryer

Acid hydrolysis → Anaerobic digestion → Methane

→ Extraction of pectin

→ Fertilizer

Fermentation of hydrolyzate → Succinic acid → Ethanol

6th International Conference on Sustainable Solid Waste Management, NAXOS 2018
CPW BioRefinery

Succinic acid
- Nitrogen sources
- Vitamins

Ethanol
- Conditions of acid hydrolysis
- Nitrogen source
- Enzyme hydrolysis

Methane
- Solid biorefinery residues
- Raw CPW
- Dry CPW

Fertilizer
- Solid biorefinery residues
- Evaluation of lettuce seedling production

6th International Conference on Sustainable Solid Waste Management, NAXOS 2018
Succinic acid

- 116 °C, 10 min
- 0.5% H₂SO₄
- 5% dry raw material

Actinobacillus succinogenes

37 °C, 0.5 vvm CO₂
30 g L⁻¹ MgCO₃

No nitrogen source added
- Ammonium sulfate
- Yeast extract
- Corn steep liquor

Supplementation of vitamins
- Yeast extract
- Corn steep liquor

Patsalou et al., J Clean Prod., 2017; 166: 706-716

6th International Conference on Sustainable Solid Waste Management, NAXOS 2018
<table>
<thead>
<tr>
<th>Raw material</th>
<th>Nitrogen source</th>
<th>Fermentation</th>
<th>Succinic acid (g L⁻¹)</th>
<th>Yield (gₐₔ g⁻¹)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycerol</td>
<td>YE (10 g L⁻¹)</td>
<td>Fed-batch, bioreactor</td>
<td>49.6</td>
<td>0.64</td>
<td>Carvalho et al., 2014</td>
</tr>
<tr>
<td>Wheat hydrolyzate</td>
<td>YE (5 g L⁻¹)/Vit</td>
<td>Batch, bioreactor</td>
<td>62.1</td>
<td>1.02</td>
<td>Dorado et al., 2009</td>
</tr>
<tr>
<td>Bread hydrolyzate</td>
<td>BH (200 mg L⁻¹ PAN)</td>
<td>Batch, bioreactor</td>
<td>47.3</td>
<td>n.d.</td>
<td>Leung et al., 2012</td>
</tr>
<tr>
<td>Cotton stalk hydrolyzate</td>
<td>YE (30 g L⁻¹)/Urea (2 g L⁻¹)</td>
<td>Batch SSF³, shake flasks</td>
<td>63.0</td>
<td>0.64</td>
<td>Li et al., 2013</td>
</tr>
<tr>
<td>Macroalgal hydrolyzate</td>
<td>YE (16.7 g L⁻¹)</td>
<td>Batch, bioreactor</td>
<td>33.8</td>
<td>0.63</td>
<td>Morales et al., 2015</td>
</tr>
<tr>
<td>Rapeseed meal</td>
<td>YE (15 g L⁻¹)</td>
<td>Fed-batch SSF³, bioreactor</td>
<td>23.4</td>
<td>0.115</td>
<td>Chen et al., 2011</td>
</tr>
<tr>
<td>Whey</td>
<td>YE (5 g L⁻¹)/Pep (10 g L⁻¹)</td>
<td>Batch, bioreactor</td>
<td>22.2</td>
<td>0.57</td>
<td>Wan et al., 2008</td>
</tr>
<tr>
<td>CPW hydrolyzate</td>
<td>YE (5 g L⁻¹)</td>
<td>Batch, shake flasks</td>
<td>8.3</td>
<td>0.70</td>
<td>Current study</td>
</tr>
</tbody>
</table>
Ethanol

- 5% dry raw material
- 0.5% H₂SO₄
- 108 °C, 116 °C, 125 °C
- 10 min & 20 min

Pichia kudriavzevii KVMP10

- Kluyveromyces marxianus
- Saccharomyces cerevisiae

42 °C

Concentration of ethanol (g L⁻¹)

- STILLAGE RECYCLING: 30.7
- ACID AND ENZYME HYDROLYSIS:
 - Ethanol: 9.21
 - Total reducing sugars: 0.42 g ethanol g⁻¹
- ACID HYDROLYSIS:
 - Ethanol: 5.83
 - Total reducing sugars: 0.48 g ethanol g⁻¹
<table>
<thead>
<tr>
<th>Raw material</th>
<th>Pretreatment method</th>
<th>Process conditions</th>
<th>Micro-organism</th>
<th>Total initial sugar content</th>
<th>Ethanol concentration</th>
<th>Ethanol productivity [g l(^{-1} \text{ h}^{-1})]</th>
<th>Yield [g ethanol g(_{\text{glc}})</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange peel hydrolysate</td>
<td>nd</td>
<td>SF</td>
<td>S. cerevisiae</td>
<td>nd</td>
<td>40-45 (g l(^{-1}))</td>
<td>0.82-0.90</td>
<td>nd</td>
<td>Grohmann et al. (1994)</td>
</tr>
<tr>
<td>Orange peel hydrolysate</td>
<td>nd</td>
<td>SF</td>
<td>E. coli</td>
<td>111 (g l(^{-1}))</td>
<td>35-35 (g l(^{-1}))</td>
<td>0.42-0.80</td>
<td>nd</td>
<td>Grohmann et al. (1996)</td>
</tr>
<tr>
<td>Orange peel hydrolysate</td>
<td>nd</td>
<td>SF, 37°C</td>
<td>K. marxianus</td>
<td>90.6 (g l(^{-1}))</td>
<td>37 (g l(^{-1}))</td>
<td>0.51</td>
<td>0.44</td>
<td>Wilkins et al. (2007a)</td>
</tr>
<tr>
<td>Orange peel hydrolysate</td>
<td>nd</td>
<td>SF, 37°C</td>
<td>S. cerevisiae</td>
<td>90.6 (g l(^{-1}))</td>
<td>41 (g l(^{-1}))</td>
<td>0.55</td>
<td>0.45</td>
<td>Wilkins et al. (2007a)</td>
</tr>
<tr>
<td>Citrus peel waste</td>
<td>Steam expolision</td>
<td>SSF, 37°C, 0.08% e.o.</td>
<td>S. cerevisiae</td>
<td>0.31 (g g(^{-1}) dry raw material)</td>
<td>39.03 (g l(^{-1}))</td>
<td>1.62</td>
<td>0.43</td>
<td>Wilkins et al. (2002b)</td>
</tr>
<tr>
<td>Orange peel hydrolysate</td>
<td>nd</td>
<td>SF, 37°C, 0.05% e.o.</td>
<td>Z. mobilis</td>
<td>90.6 (g l(^{-1}))</td>
<td>43.5 (g l(^{-1}))</td>
<td>0.60</td>
<td>0.48</td>
<td>Wilkins (2009)</td>
</tr>
<tr>
<td>Mandarin waste and banana peels</td>
<td>Steam depressurization</td>
<td>SSF, 30°C</td>
<td>S. cerevisiae and P. tannophilus</td>
<td>0.17 (g g(^{-1}) dry raw material)</td>
<td>26.84 (g l(^{-1}))</td>
<td>0.55</td>
<td>0.42</td>
<td>Sharma et al. (2007)</td>
</tr>
<tr>
<td>Orange peel hydrolysate</td>
<td>Two stage acid hydrolysis</td>
<td>SF, 34°C</td>
<td>S. cerevisiae</td>
<td>27.54 (g l(^{-1}))</td>
<td>30.33 (g l(^{-1}))</td>
<td>3.37</td>
<td>0.46</td>
<td>Oberoi et al. (2010)</td>
</tr>
<tr>
<td>Mandarin waste</td>
<td>Hydrothermal sterilization</td>
<td>SSF, 37°C</td>
<td>S. cerevisiae</td>
<td>74 (g l(^{-1}))</td>
<td>42 (g l(^{-1}))</td>
<td>3.50</td>
<td>0.48</td>
<td>Oberoi et al. (2011)</td>
</tr>
<tr>
<td>Citrus waste</td>
<td>Dilute-acid hydrolysis and pectin recovery</td>
<td>SSF, 30°C</td>
<td>S. cerevisiae</td>
<td>32.97 (g l(^{-1}))</td>
<td>39.64 (g l(^{-1}))</td>
<td>nd</td>
<td>0.43</td>
<td>Pourbafani et al. (2010)</td>
</tr>
<tr>
<td>Mandarin waste</td>
<td>Enzyme hydrolysis</td>
<td>SSF, 40°C</td>
<td>P. kudriavzevi</td>
<td>64 (g l(^{-1}))</td>
<td>33.87 (g l(^{-1}))</td>
<td>2.82</td>
<td>0.67</td>
<td>Sandhu et al. (2012)</td>
</tr>
<tr>
<td>Mandarin waste</td>
<td>Steam expolision</td>
<td>SSF, 37°C</td>
<td>S. cerevisiae</td>
<td>nd</td>
<td>60 (g l(^{-1}))</td>
<td>nd</td>
<td>0.43</td>
<td>Boluda-Aguilar et al. (2010)</td>
</tr>
<tr>
<td>Lemon peel waste</td>
<td>Steam expolision</td>
<td>SSF, 37°C</td>
<td>S. cerevisiae</td>
<td>nd</td>
<td>67.83 (g l(^{-1}))</td>
<td>nd</td>
<td>nd</td>
<td>Boluda-Aguilar and Lopez-Gomez (2013)</td>
</tr>
<tr>
<td>Orange peel waste</td>
<td>Enzyme hydrolysis</td>
<td>Aer, 32°C</td>
<td>M. indicus</td>
<td>39 (g l(^{-1}))</td>
<td>15 (g l(^{-1}))</td>
<td>0.62</td>
<td>0.39</td>
<td>Lennarsson et al. (2012)</td>
</tr>
<tr>
<td>Orange peel waste hydrolysate</td>
<td>nd</td>
<td>SF, Aer, 32°C</td>
<td>Rhizopus sp.</td>
<td>50 (g l(^{-1}))</td>
<td>nd</td>
<td>nd</td>
<td>0.37</td>
<td>Lennarsson et al. (2012)</td>
</tr>
<tr>
<td>Orange peel waste hydrolysate</td>
<td>nd</td>
<td>SF, Aer, 32°C</td>
<td>M. indicus</td>
<td>50 (g l(^{-1}))</td>
<td>nd</td>
<td>nd</td>
<td>0.41</td>
<td>Lennarsson et al. (2012)</td>
</tr>
<tr>
<td>Orange peel waste hydrolysate</td>
<td>nd</td>
<td>SF, Aer, 32°C</td>
<td>M. indicus</td>
<td>50 (g l(^{-1}))</td>
<td>nd</td>
<td>nd</td>
<td>0.39</td>
<td>Lennarsson et al. (2012)</td>
</tr>
<tr>
<td>Orange peel waste hydrolysate</td>
<td>Pepping and enzyme hydrolysis</td>
<td>SF, 30°C</td>
<td>S. cerevisiae</td>
<td>0.63 (g g(^{-1}) raw material)</td>
<td>46.2 (g l(^{-1}))</td>
<td>3.85</td>
<td>0.91</td>
<td>Choi et al. (2013)</td>
</tr>
<tr>
<td>Orange peel hydrolysate</td>
<td>nd</td>
<td>SF, 30°C</td>
<td>P. kudriavzevi</td>
<td>101 (g l(^{-1}))</td>
<td>25 (g l(^{-1}))</td>
<td>1.08</td>
<td>nd</td>
<td>This study</td>
</tr>
<tr>
<td>Orange peel hydrolysate</td>
<td>nd</td>
<td>SF, 42°C</td>
<td>P. kudriavzevi</td>
<td>101 (g l(^{-1}))</td>
<td>54 (g l(^{-1}))</td>
<td>2.25</td>
<td>nd</td>
<td>This study</td>
</tr>
</tbody>
</table>
Methane

- Solid biorefinery residues
- Raw CPW
- Dry CPW

Mesophilic conditions
6 g L⁻¹ volatile solids
<table>
<thead>
<tr>
<th>Raw material</th>
<th>CH\textsubscript{4} (ml g\textsubscript{VS}^{-1})</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus sinensis (dried peels)</td>
<td>400</td>
<td>Gunaseelan et al., 2004</td>
</tr>
<tr>
<td>Citrus waste (steam distilled)</td>
<td>125</td>
<td>Martin et al., 2010</td>
</tr>
<tr>
<td>Orange peel hydrolysate and solid residue</td>
<td>363</td>
<td>Pourbafrani et al., 2010</td>
</tr>
<tr>
<td>Citrus waste (steam explosion)</td>
<td>500</td>
<td>Forgcs et al., 2011</td>
</tr>
<tr>
<td>Citrus waste</td>
<td>50</td>
<td>Forgcs et al., 2011</td>
</tr>
<tr>
<td>Orange peel</td>
<td>267</td>
<td>Sanjaya et al., 2016</td>
</tr>
<tr>
<td>Mandores</td>
<td>342</td>
<td>Current study</td>
</tr>
<tr>
<td>Mandores (hydrolysed)</td>
<td>349</td>
<td>Current study</td>
</tr>
</tbody>
</table>

Biogas (ml g\textsubscript{VS}^{-1})

- **Raw material:**
 - 35 days: 102.03, 35 days: 141.41, 112 days: 156.51

- **Dry raw material:**
 - 35 days: 67.78, 75.99, 112 days: 83.77

- **Hydrolysed:**
 - 35 days: 54.59, 71.85, 112 days: 89.35

Methane (ml g\textsubscript{grm}^{-1})

- **Raw material:**
 - 35 days: 42.95, 71 days: 42.06, 112 days: 45.30

- **Dry raw material:**
 - 35 days: 42.80, 71 days: 50.85, 112 days: 49.88

- **Hydrolysed:**
 - 35 days: 72.21, 71 days: 77.56, 112 days: 84.45
Fertilizer

- Applied as substrate for lettuce

<table>
<thead>
<tr>
<th></th>
<th>0%</th>
<th>1%</th>
<th>2.5%</th>
<th>5%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5.59 ± 0.0318a</td>
<td>5.10 ± 0.0289b</td>
<td>4.85 ± 0.0289c</td>
<td>4.03 ± 0.0231d</td>
<td>3.31 ± 0.0203e</td>
</tr>
<tr>
<td>EC (μS cm⁻¹)</td>
<td>1215 ± 7.10e</td>
<td>1374.1 ± 8.03d</td>
<td>2085.9 ± 12.15c</td>
<td>2778.9 ± 16.19b</td>
<td>3970.9 ± 23.15a</td>
</tr>
<tr>
<td>Organic matter %</td>
<td>97.87 ± 0.372ab</td>
<td>98.57 ± 0.248a</td>
<td>98.18 ± 0.003ab</td>
<td>97.84 ± 0.003b</td>
<td>97.99 ± 0.121ab</td>
</tr>
<tr>
<td>Organic C %</td>
<td>56.77 ± 0.217ab</td>
<td>57.18 ± 0.147a</td>
<td>56.95 ± 0.000ab</td>
<td>56.75 ± 0.000b</td>
<td>56.84 ± 0.069ab</td>
</tr>
<tr>
<td>Total N (g kg⁻¹)</td>
<td>4.60 ± 0.087d</td>
<td>6.02 ± 0.318b</td>
<td>5.13 ± 0.044cd</td>
<td>5.55 ± 0.193ab</td>
<td>6.65 ± 0.017a</td>
</tr>
<tr>
<td>K (g kg⁻¹)</td>
<td>0.62 ± 0.003e</td>
<td>0.69 ± 0.015d</td>
<td>0.76 ± 0.002c</td>
<td>0.83 ± 0.025b</td>
<td>1.10 ± 0.003a</td>
</tr>
<tr>
<td>P (g kg⁻¹)</td>
<td>0.402 ± 0.0364b</td>
<td>0.357 ± 0.0165b</td>
<td>0.396 ± 0.0069b</td>
<td>0.414 ± 0.0147ab</td>
<td>0.473 ± 0.0040a</td>
</tr>
<tr>
<td>Na (g kg⁻¹)</td>
<td>0.172 ± 0.0012b</td>
<td>0.182 ± 0.0038b</td>
<td>0.179 ± 0.0009b</td>
<td>0.180 ± 0.0121b</td>
<td>0.215 ± 0.0090a</td>
</tr>
<tr>
<td>Total porosity % (v/v)</td>
<td>85.4 ± 0.84bc</td>
<td>82.3 ± 1.06c</td>
<td>82.7 ± 0.10c</td>
<td>85.9 ± 1.59ab</td>
<td>88.8 ± 0.31a</td>
</tr>
<tr>
<td>Air filled porosity % (v/v)</td>
<td>11.8 ±1.01bc</td>
<td>9.3 ± 0.21d</td>
<td>10.6 ± 0.20cd</td>
<td>12.7 ± 0.61ab</td>
<td>14.2 ± 0.70a</td>
</tr>
<tr>
<td>Container capacity % (v/v)</td>
<td>73.6 ± 0.17ab</td>
<td>73.0 ± 0.85ab</td>
<td>72.1 ± 0.29b</td>
<td>73.3 ± 0.97ab</td>
<td>74.6 ± 0.39a</td>
</tr>
<tr>
<td>Bulk density (g cm⁻³)</td>
<td>25.0 ± 0.33a</td>
<td>24.5 ± 0.16a</td>
<td>23.6 ± 0.26b</td>
<td>24.5 ±0.24bc</td>
<td>25.2 ± 0.28a</td>
</tr>
</tbody>
</table>

Diagram:
- Citrus peel waste
- Extraction of essential oils
- Dryer
- Anaerobic digestion
- Methane
- Fertilizer
- Succinic acid
- Ethanol

6th International Conference on Sustainable Solid Waste Management, NAXOS 2018
Fertilizer

In vitro

[Graph showing germination percentage over days for different concentrations of fertilizer]

In vivo

[Photos of plants grown in different conditions labeled with control and fertilizer concentrations]
BioRefinery

Succinic acid
- Simultaneous Saccharification and Fermentation
- Fed-Batch fermentations

Ethanol
- Optimal Conditions: 116 °C, 10 min
- *Pichia kudriavzevii* KVMP10, 30.70 g L⁻¹ with the application of stillage recycling

Methane
- Dry CPW
- Adaptation of sludge

Fertilizer
- Enhance plant growth

Technoeconomical analysis
Thank you 😊