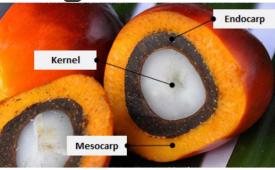


6th International Conference on Sustainable Solid Waste Management (NAXOS2018)

Sustainable valorization of wastewater sludge into organic fertilizer through vermicomposting process

CEALS RIVE	Presenter	: T.Y. Wu
	Co-researchers	: L.H. Lee : K.Y. Ng : K.P.Y. Shak : M.N. Nguyen : W.H. Teoh
	Date	: 15 June 2018

1. Introduction


- Malaysia is the world's leading producers and exporter of palm oil products after Indonesia.
- Waste produced:
 Oil palm trunks
 Oil palm fronds
 Empty fruit bunches
 Palm kernel shell
 Palm pressed fiber
 Palm oil mill effluent (POME)

Source: (Wu et al., 2007; Foo and Hameed, 2010)

Introduction (Continued...)

Research Background - POME

Oil palm fruits

Palm oil mill effluent (POME)

Palm oil extraction

Ponding system of POME

= 1 tonnes CPO~ 3 tonnes POME

= ~60 million tonnes of wet weight per year

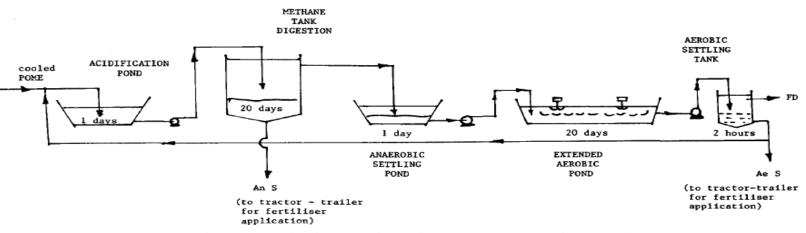
Introduction (Continued...)

1

Characteristics of raw POME and the regulatory discharge limits

Parameters ^a	Range ^{c,f}	Regulatory discharge limits ^d
рН	4.2 - 4.7	5.0 - 9.0
Temperature (°C)	80 - 90	45
Biochemical oxygen demand (BOD ₃ ^b)	21,500 – 28,500	100 (50)
Chemical oxygen demand (COD)	45,500 - 65,000	-
Total suspended solids	15,660 – 23,560	400
Total Kjeldahl Nitrogen	750	200
C:N ratio	6.54	-
Calcium (Ca)	276 – 405	-
Magnesium (Mg)	254 - 344	-
Phosphorus (P)	94 - 131	-
Potassium (K)	1281 – 1928	-

^aAll values, except pH and temperature, are expressed in mg.L⁻¹


^bThe sample for BOD analysis is incubated at 30°C for 3 days

Sources: c(Ma, 2000), d(Ahmad et al., 2003), e(Wood et al., 1979; Wong et al., 2009), f (Wu et al., 2010)

Ponding System

- Most common treatment method
- 85% of the palm oil mills in Malaysia employed the ponding system to treat POME

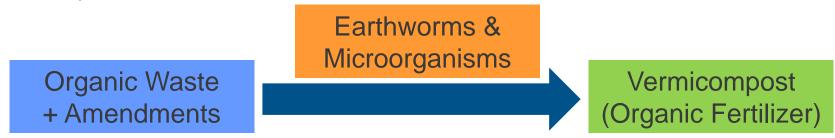
Typical schematic diagram of ponding system (Ma and Ong, 1985)

Problem

• Sludge build-up

Current management methods

- Drying
- Land Application


Source: (Ma and Ong, 1985; Rupani et al., 2010)

Introduction (Continued...)

Vermicomposting

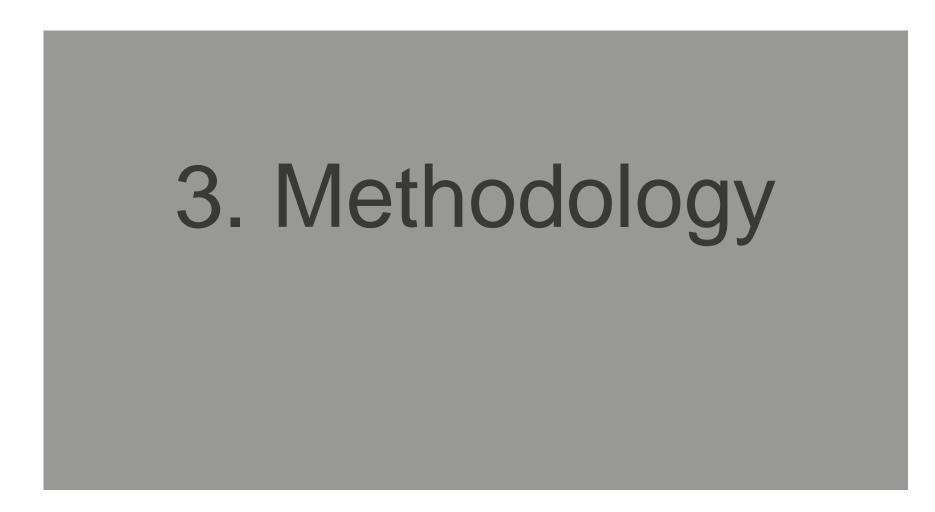
Natural conversion of biodegradable waste into organic fertilizer (Lee et al., 2018)

Advantages of vermicomposting process (Lim et al., 2016):

- Shorter processing time
- High nutrients recovery

Benefits of vermicompost (Sim and Wu, 2010):

- Rich in nutrients
- Improve soil texture
- Improve plant growth


2. Research Objective

Research Objective

To bio-transform wastewater sludge produced from the (aerobic) treatment pond of POME into organic fertilizer using vermicomposting process.

Research Methodology

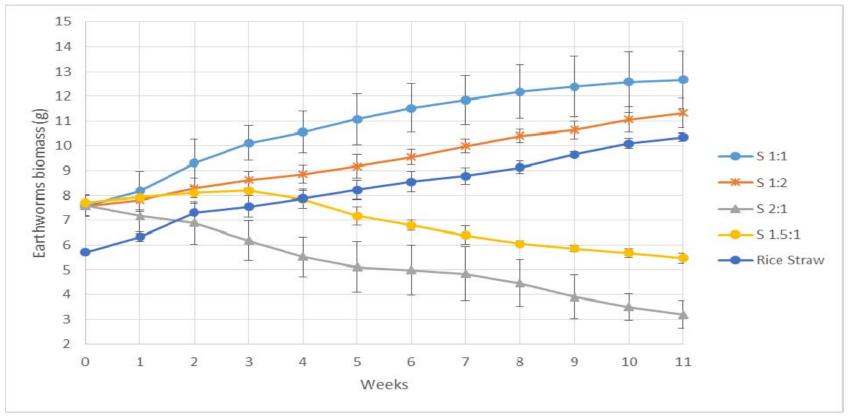
- Earthworm species: *Eudrilus eugeniae*
- Vermicomposting duration: **11 weeks**
- Feeding rate: 0.5 kg feed/kg worm/day
- Organic waste: POME sludge (S)
- Amendment: rice straw (R)
- Treatments: S, R, S1:R1, S1.5:R1, S2:R1, S1:R2

4. Stage 1: Preliminary Research

Summary of Results

- Growth and reproduction of *Eudrilus eugeniae*
- Physico-chemical changes of vermicompost
 - ≻ pH
 - Electrical conductivity (EC)
 - C/N Ratio
 - > Potassium, Magnesium, Calcium, Phosphorus

Description of the treatment for vermicomposting of wastewater sludge


Treatment	Description
RS	Pure rice straw
S 1:2	1 Wastewater Sludge : 2 Rice Straw
S 1:1	1 Wastewater Sludge : 1 Rice Straw
S 2:1	2 Wastewater Sludge : 1 Rice Straw
S 1.5:1	1.5 Wastewater Sludge : 1 Rice Straw

Preliminary Research (Continued...)

Growth and Reproduction of earthworm, *E. eugeniae*

Biomass of earthworms

Biomass of earthworms in wastewater sludge treatment

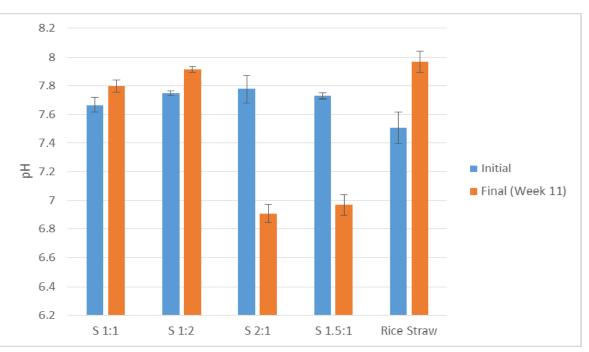
Growth and Reproduction of earthworm, *E. eugeniae*

Biomass of earthworms

4

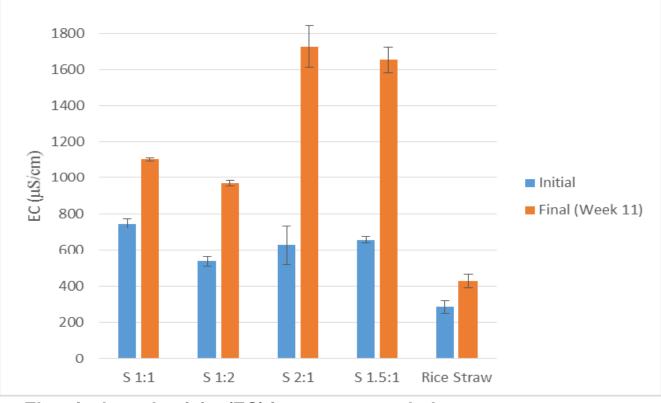
Earthworms biomass and density (number of individuals) in the initial and final vermicomposts for the different treatments (Mean \pm SD, n = 3)^{*a*}

Treatment	Initial feedstock		Final vermicompost	
	Earthworms	No. of	Earthworms	No. of
	biomass (g)	individuals	biomass (g)	individuals
R	$5.71 \pm 0.01a$	$10 \pm 0a$	$10.35\pm0.17a$	$10 \pm 0a$
S1:R2	$7.59\pm0.42b$	$13\pm0b$	$11.32\pm0.60\text{ab}$	$13\pm0b$
S1:R1	$7.59\pm0.41b$	$13 \pm 0b$	$12.67\pm1.16b$	$13 \pm 0b$
S1.5:R1	$7.72\pm0.01b$	$13\pm0b$	$5.46 \pm 0.21c$	$9 \pm 1a$
S2:R1	$7.60\pm0.41b$	$13 \pm 0b$	$3.19\pm0.57d$	$7 \pm 1c$


^{*a*} Mean values followed by different letters are statistically different (ANOVA, Turkey's test, P < 0.05).

Physico-chemical changes of vermicompost

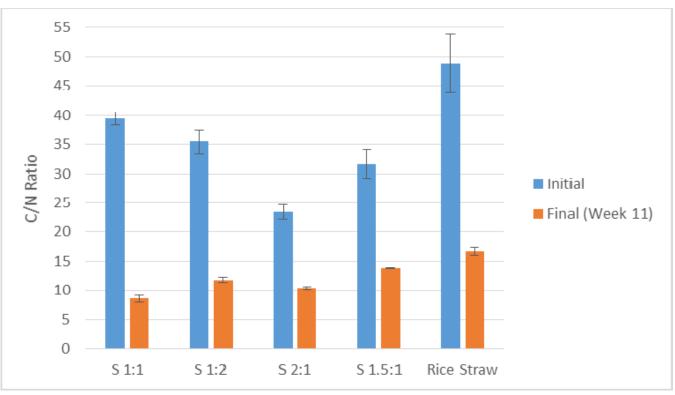
4



pH in wastewater sludge treatment

- Increase in pH: degradation of short fatty acid chains and intensive mineralization of nitrogen (Tognetti et al., 2007)
- Decrease in pH: production of CO₂ and organic acid (Lim et al., 2011)
- pH shift is dynamic and dependent on type of organic waste (Gupta and Garg, 2008)

Electrical Conductivity (EC)


Electrical conductivity (EC) in wastewater sludge treatment

- EC: salinity of organic amendment or total amount of dissolved ions available (Lim et al., 2012)
- Increase in EC: mineral salts were released in a more available form (Tognetti et al., 2007)

C/N Ratio

4

C/N ratio in wastewater sludge treatment

- C/N ratio is used as indication of vermicompost maturation (Singh et al., 2011)
- Lower C content and higher N content show the maturity and stabilization of the vermicomposts
- Loss of carbon as CO₂ through respiration and increases of nitrogen content due to the production of mucus, enzyme as well as nitrogenous excrements by the earthworms

Preliminary Research (Continued...)

4

Major nutrients (Potassium, Magnesium, Calcium, Phosphorus)

Treatment	Potassium (g/kg)	Magnesium (g/kg)	Calcium (g/kg)	Phosphorus (g/kg)
R	$5.31 \pm 0.31a$	$2.20 \pm 0.10a$	$0.63 \pm 0.06ab$	$1.75 \pm 0.21a$
\$1:R2	$8.45 \pm 0.47 bc$	$4.74 \pm 0.26b$	$0.79 \pm 0.08a$	$2.35\pm0.07a$
S1:R1	$8.14\pm0.07b$	$5.29 \pm 0.10b$	$0.80 \pm 0.01a$	$2.40\pm0.49a$
S1.5:R1	$6.46\pm0.17d$	$3.31 \pm 0.23c$	$0.57\pm0.05b$	$2.78\pm0.39a$
S2:R1	$9.25 \pm 0.35c$	7.02 ± 0.24 d	$1.01 \pm 0.06c$	$2.60\pm0.49a$

Initial chemical characteristics of waste mixtures (Mean \pm SD, n = 3)

Final chemical characteristics of waste mixtures (Mean \pm SD, n = 3)

Treatment	Potassium (g/kg)	Magnesium (g/kg)	Calcium (g/kg)	Phosphorus (g/kg)
R	$5.56 \pm 0.22a$	$2.76 \pm 0.16a$	$0.74\pm0.02a$	$2.60 \pm 0.35a$
S1:R2	$9.26 \pm 0.24b$	$7.31 \pm 0.37b$	$0.99 \pm 0.05b$	$4.48\pm0.04b$
S1:R1	$9.91 \pm 0.07c$	$8.85 \pm 0.21c$	$1.18 \pm 0.01c$	$3.85 \pm 0.21 \mathrm{ab}$
S1.5:R1	6.77 ± 0.14 d	$4.56 \pm 0.20d$	$0.73 \pm 0.01a$	3.98 ± 0.39 ab
S2:R1	$9.93 \pm 0.24c$	$9.95 \pm 0.36e$	1.16 ± 0.12 bc	$3.85 \pm 0.57 ab$

^a Mean values followed by different letters are statistically different (one-way ANOVA; Turkey's test, P < 0.05).

Stage 1 Conclusion

4

Best treatment for the wastewater sludge

Table 3: Ratio of wastewater sludge to rice straw that produced the highest vermicompost quality

Parameters	S1:1 Treatment
Treatment description	1 wastewater sludge : 1 Rice straw
рН	7.80 ± 0.04
Electrical conductivity (µS/cm)	1102 ± 8.66
C/N	8.60 ± 0.62
Reduction of C/N (%)	78.2
Earthworms biomass (g)	12.67 ± 1.16
Increase of earthworm biomass (%)	67.1
Vermicomposting duration	11 weeks

5. Stage 2: Detailed vermicompost maturity and stability studies

Stage 2: Detailed vermicompost Maturity and Stability Studies (Continued...)

Further evaluation of the maturity and stability of the vermicompost via instrumental characterization

- Combination of tests should be employed for assessment of maturity and stability of vermicompost
- Useful for determining the effectiveness of vermicomposting process in producing high quality organic fertilizer

Type of characterizations:

- Fourier transform infrared (FT-IR) spectroscopy
- Thermogravimetric (TG) analyzer
- Scanning electron microscopy (SEM)
- Brunauer-Emmett-Teller (BET) method
- * This study is limited to the best ratio of wastewater sludge to rice straw determined from Stage 1 of the study

FT-IR

5

- Wave number: ranged from 4000 to 500 cm⁻¹.
- Functional groups: hydrogen bond O-H, aliphatic methylene peaks, aldehydes and organic esters peak, amines group C=O, C-O stretch of polysaccharides, cellulose and hemicellulose

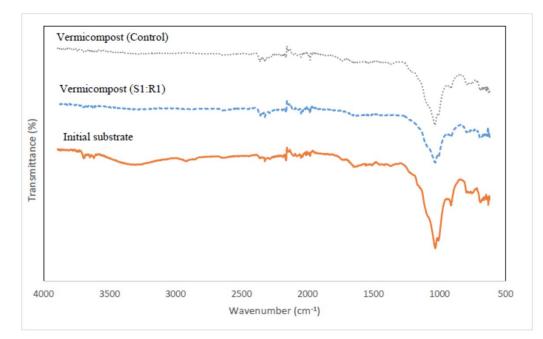
TGA

• The samples were combusted from 30 to 1000°C with a heating rate increment of 10°C/min under air atmosphere.

SEM

Used to determine to microstructures and surface morphology of the samples

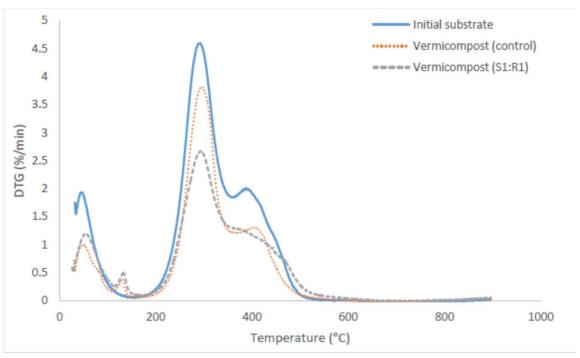
BET


- Brunauer-Emmett-Teller (BET) method
- By using N₂ gas as the adsorbate at 77.3K, the samples were degassed for 2 hours at 90°C, subsequently 22 hours at 110°C before the adsorption analysis.

Stage 2: Detailed vermicompost Maturity and Stability Studies (Continued...)

Results and Discussions

Spectroscopic Analysis: FT-IR

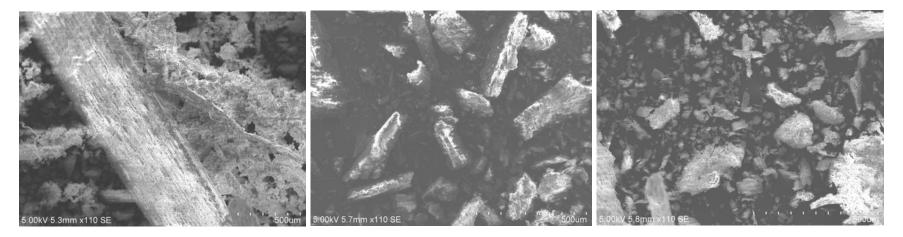


FT-IR spectra

Wavenumber (cm ⁻¹)	Band assignment
~ 3200	Carboxylic group
2921	C-H stretch of aliphatic methylene group
1633	C=O stretch of amides
1034	C-O stretch of polysaccarides

Thermogravimetry (TG) Analysis

Differential thermogravimetric (DTG) curve


- DTG1 at 50°C: dehydration of the residual water
- DTG2 at 280°C: degradation of readily degradable materials and semivolatile compounds
- DTG3 at 400-600°C: degradation of complex and condensed organic compounds; shifts toward higher temperature with increasing stabilization

(Lim et al., 2015; Wu et al., 2011)

Stage 2: Detailed vermicompost Maturity and Stability Studies (Continued...)

Structural Analysis: BET and SEM

SEM images of (a) initial substrate, (b), vermicompost (control), (c), vermicompost (S1:R1)

	BET Surface Area (m²/g)
Initial substrate	4.1155
Vermicompost (control)	7.3529
Vermicompost (S1:R1)	7.5574

6. Conclusion

- *E. eugeniae* were capable in transforming wastewater sludge obtained from the POME treatment pond into fertilizer via vermicomposting.
- Higher quality vermicompost was produced from S1:R1 treatment.
- The combined FT-IR and TG analysis showed a reduction in readily degradable materials such as carbohydrates, polysaccharides and aliphatic compounds.
- Structure characterization showed that the vermicompost was more fragmented and had larger surface area.

THANK YOU

