

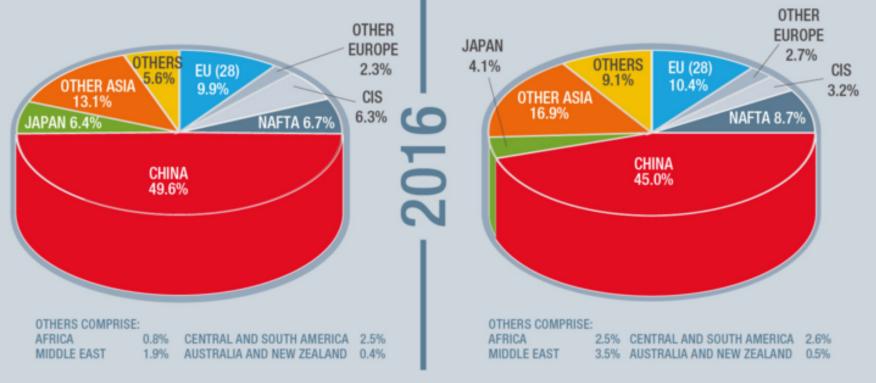
6th International Conference on Sustainable Solid Waste Management

Hydration characteristics of silica-alumina based cementitious materials composed of steel slag

by Na Zhang Associate Professor, PhD School of Materials Science and Technology China University of Geosciences, Beijing 15 June 2018, NAXOS, Greece

Contents

- Introduction
- Hydration products of silica-alumina based
 cementitious materials composed of steel slag
- > Utilization of red mud / iron tailings
 - in materials research


Steel slag is a solid waste generated during the steelmaking process.Producing 1 ton of crude steel generates 0.1-0.15 ton of steel slag.How many quantities of steel slag produced every year in China?

Steel Production and Use: Geographical Distribution in 2016

CRUDE STEEL PRODUCTION

WORLD TOTAL: 1630 MILLION TONNES

《World Steel in Figures 2017》

APPARENT STEEL USE

(FINISHED STEEL PRODUCTS)

WORLD TOTAL: 1515 MILLION TONNES

TOP 20 STEEL-PRODUCING COUNTRIES 2016 (MILLION TONNES)

«World Steel in Figures 2017»

Using steel slag to produce construction materials is an effective way to largely consume this solid waste.

The high content of P_2O_5 in some steel slags leads to a serious retarding phenomenon in Portland cement, which limits the adding amount of steel slag in the traditional cement and concrete.

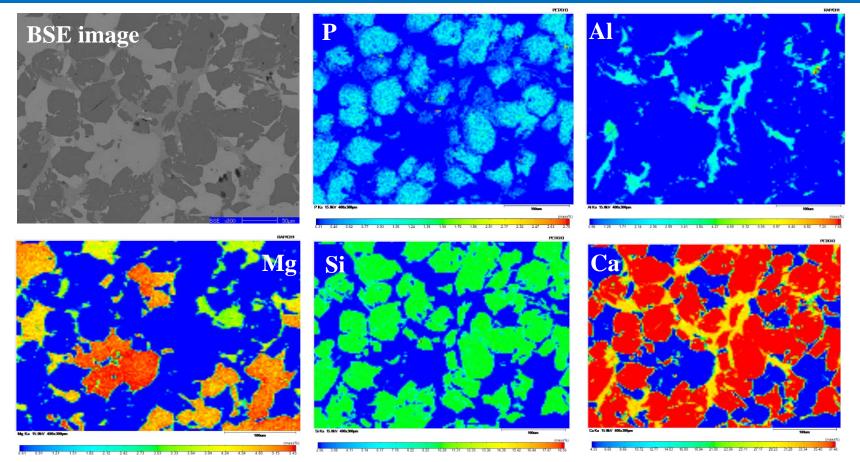

Steel Plants	CaO	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	FeO	P ₂ O ₅	MnO
А	52.65	12.25	3.04	6.11	9.10	10.41	0.61	4.57
В	58.21	16.23	2.63	3.15	2.27	7.91	1.16	4.46
С	45.34	8.85	3.28	8.81	7.98	19.37	0.73	2.39
D	43.14	15.56	2.58	5.16	3.41	19.22	3.88	2.34
E	52.39	13.27	2.82	7.27	6.28	13.24	1.31	1.03

Table 1 Chemical composition of steel slag in China (wt%)

Alkalinity	C ₃ S	C ₂ S	RO
4.25	50-60	1-5	15-20
3.08	35-45	5-10	15-20
2.74	30-35	20-30	3-5
2.63	20-30	10-20	15-20
2.57	15-25	20-25	40-50
2.12		20-30	15-20
1.25	-	5-10	7-15

Table 2Phase composition of steel slagwith different alkalinity (wt%)

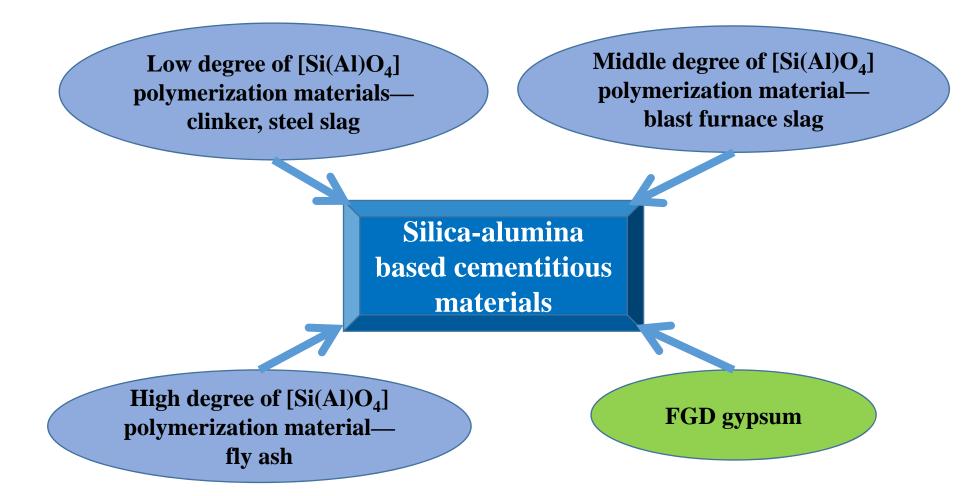

Occurrence state of phosphorus in steel slag

Fig. 1 Electron probe microanalysis (EPMA) elemental mappings of steel slag

Phosphorus is enriched apparently in steel slag, and it is mainly occurring in Ca_2SiO_4 (C_2S) and Ca_3SiO_5 (C_3S) with P_2O_5 content of 3.2-7.5 wt.%.

Compound synergistic effect of industrial solid wastes

Mechanical properties

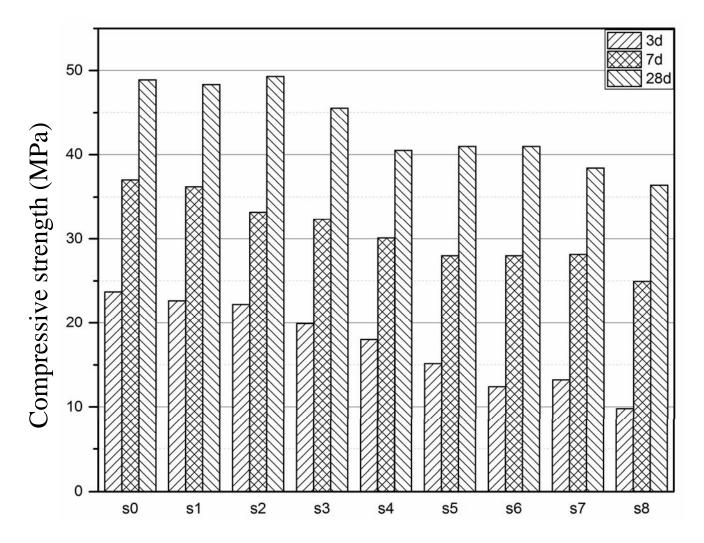


Fig. 2 Compressive strength of silica-alumina based cementitious materials composed of steel slag

Final setting time

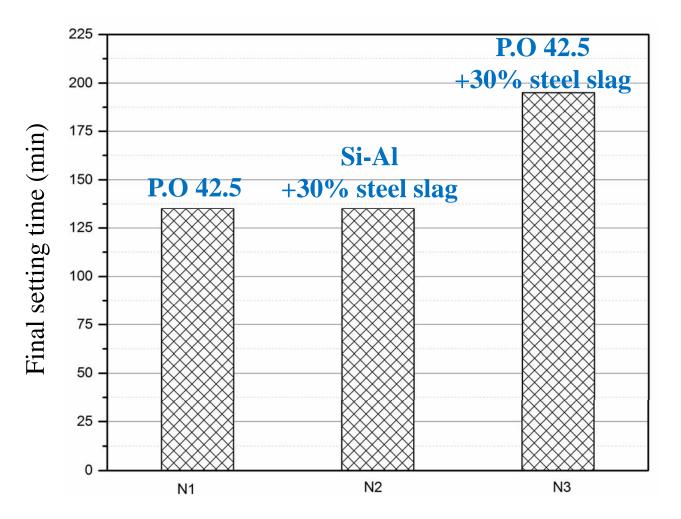


Fig. 3 Final setting time of mortars

Hydration products

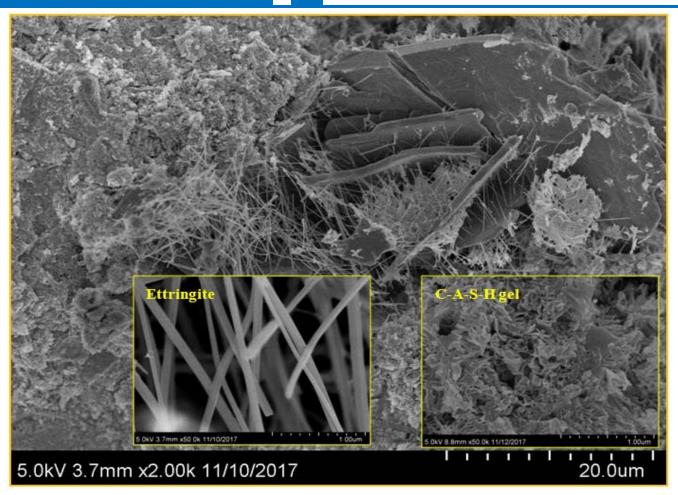
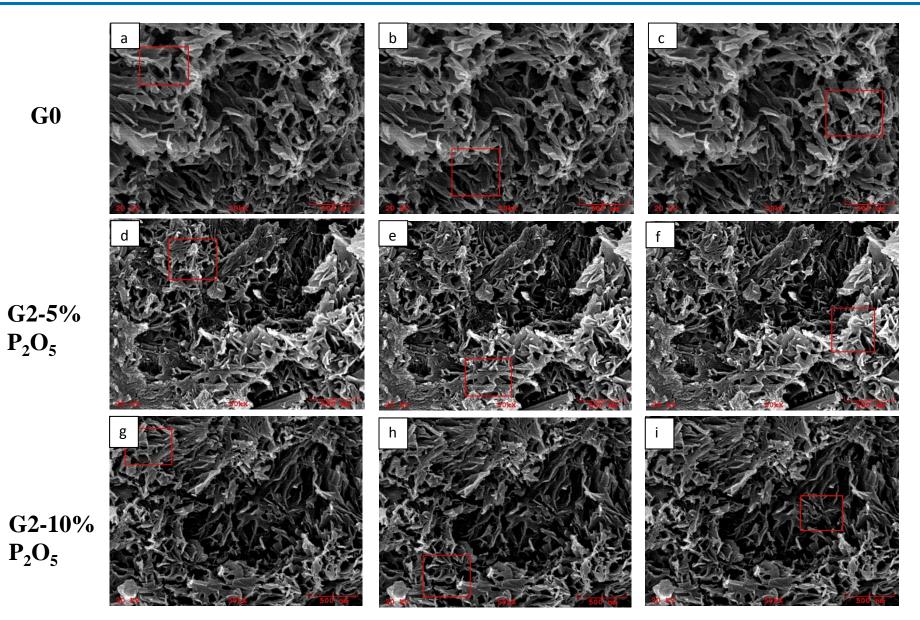



Fig. 4 SEM image of hydration products of silica-alumina based cementitious materials composed of steel slag

The needle-like ettringite and amorphous C-A-S-H gel play a positive role in promoting densification of the paste structure.

SEM-EDS analysis of C-A-S-H gels

Phosphorus content in the C-A-S-H gels

Spots	0	Mg	Al	Si	S	Р	Ca
a	42.17	1.82	5.78	15.77	1.07	-	32.65
b	36.13	3.49	6.68	16.28	1.18	-	35.03
С	39.20	1.77	5.24	14.05	0.91	-	30.70
d	53.63	1.83	6.02	11.15	1.42	2.53	15.37
e	55.96	1.58	5.22	9.36	1.54	2.59	15.57
f	56.79	2.03	5.03	9.56	1.05	2.11	14.48
g	60.91	2.65	5.10	12.32	1.18	2.54	15.03
h	53.66	2.51	5.19	12.81	1.18	2.65	17.13
i	48.12	2.95	5.70	14.17	1.40	1.71	20.94

Table 3SEM-EDS results (Atomic%)

The phosphorus in steel slag was involved into the hydration reaction to form C-A-S-H gel. (Hydroxyapatite was not found in the hydration products.)

Utilization of red mud in materials research

Red mud road base material

Utilization of red mud in materials research

Red mud composite plate

Iron tailings 3D materials research

Related Publications

[1] N. Zhang, H. Sun, X. Liu, J. Zhang. Early-age characteristics of red mud-coal gangue cementitious material. *Journal of Hazardous Materials*, 2009, 167(1-3): 927-932. (SCI, IF: 6.065)

[2] N. Zhang, X. Liu, H. Sun, L. Li. Pozzolanic behaviour of compound-activated red mud-coal gangue mixture. *Cement and Concrete Research*, 2011, 41(3): 270-278. (SCI, IF: 4.762)
[3] N. Zhang, X. Liu, H. Sun, L. Li. Evaluation of blends bauxite-calcination-method red mud with other industrial wastes as a cementitious material: properties and hydration characteristics. *Journal of Hazardous Materials*, 2011, 185(1): 329-335. (SCI, IF: 6.065)

[4] N. Zhang, H. Li, X. Liu. Hydration mechanism and leaching behavior of bauxitecalcination-method red mud-coal gangue based cementitious materials. *Journal of Hazardous Materials*, 2016, 314: 172-180. (SCI, IF: 6.065)

[5] N. Zhang, H. Li, Y. Zhao, X. Liu. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag. *Journal of Hazardous Materials*, 2016, 306: 67-76. (SCI, IF: 6.065)

[6] Xiaoming Liu, **Na Zhang**, Yuan Yao, Henghu Sun, Huan Feng. Micro-structural characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials. *Journal of Hazardous Materials*, 2013, 262: 428-438. (SCI, IF: 6.065)

Related Publications

[7] Xiaoming Liu, **Na Zhang**, Henghu Sun, Jixiu Zhang, Longtu Li. Structural investigation relating to the cementitious activity of bauxite residue – Red mud. *Cement and Concrete Research*, 2011, 41(8): 847-853. (SCI, IF: 4.762)

[8] Xiaoming Liu, Na Zhang. Utilization of red mud in cement production: a review. *Waste Management and Research*, 2011, 29(10): 1053-1063. (SCI, IF: 1.803)

[9] Xiaoming Liu*, Xibin Zhao, Haifeng Yin, Jiaolong Chen, **Na Zhang***. Intermediatecalcium based cementitious materials prepared by MSWI fly ash and other solid wastes: hydration characteristics and heavy metals solidification behavior. *Journal of Hazardous Materials*, 2018, 349: 262-271. (SCI, IF: 6.065)

THANKS FOR YOUR ATTENTION

Contact Information: Dr. Na Zhang Tel: +86-136-8101-6619 Email: nazhang@cugb.edu.cn