

### Chromium recovery from tannery sludge and its ash based on hydrometallurgy

### E. Pantazopoulou<sup>1</sup>, <u>A. Zouboulis<sup>1</sup></u>

<sup>1</sup> Department of Chemistry, Aristotle University of Thessaloniki, Greece

6th International Conference on Sustainable Solid Waste Management



# NAXOS2018

Introduction

- Chromium-rich tannery waste (Cr-RTW)
- > Objective

Characterization of Cr-RTW

- > Physico-chemical characterization
- Structural characterization
- Thermal treatment
- Mass loss under oxic conditions
- Anoxic conditions
- Hydrometallurgical Cr recovery
- > Experimental
- From Cr-RTW
- ➢ From Cr-RTW ash
- Conclusions
- Acknowledgements

<sup>6</sup>th International Conference on Sustainable Solid Waste Management, Naxos Greece, 13-16 June 2018

### Cr-rich tannery waste (Cr-RTW)

- > Leather resistance is achieved through  $Cr_2(SO_4)_3$  during tanning process.
- About 30% of organic matter of leather, as well as 30-60% of  $Cr_2(SO_4)_3$ , ends up in tannery wastewater.
- > Cr-rich tannery sludge is produced during physico-chemical treatment, in which Cr(III) is precipitated by regulating pH with  $Ca(OH)_2$ .



#### Cr-rich tannery waste (Cr-RTW)

- > Air-dried Cr-rich tannery sludge with 11% humidity.
- > It contains Cr(III), Ca, Na, organic matter (proteins, fats) and salts (chlorides, sulfates, carbonates).
- > It is characterized as non-hazardous according to EWC (code 04 01 06).
- **>** The most common management practice: Landfill and/or thermal treatment ή η καύση της.

<sup>6&</sup>lt;sup>th</sup> International Conference on Sustainable Solid Waste Management, Naxos Greece, 13-16 June 2018

# Objective

- Thermal treatment of Cr-RTW under anoxic conditions, in order to reduce the volume of the waste and avoid the oxidation of Cr(III) to Cr(VI).
- Hydrometallurgical Cr recovery direct from the Cr-RTW, as well as from its ash (under anoxic conditions), in order to re-use Cr in tannery process.



<sup>6</sup>th International Conference on Sustainable Solid Waste Management, Naxos Greece, 13-16 June 2018

Characterization of Cr-RTW (1/2) Physico-chemical characterization

#### $\succ$ Digestion with HNO<sub>3</sub>

|   |     |     |     |       |           | 0         |      |     |         |      |
|---|-----|-----|-----|-------|-----------|-----------|------|-----|---------|------|
|   |     |     |     | ance  | dry subst | rt.% of o | W    |     |         |      |
|   | Ν   | C   | Fe  | Mg    | Ca        | Na        | К    | Al  | r total | Cr t |
| h | 1.7 | 23  | 0.2 | 1.3   | 9.1       | 0.7       | 0.08 | 0.3 | 8.6     | 8    |
|   |     |     |     | tance | dry subs  | g/kg of   | m    |     |         |      |
|   | Zn  | Se  | Sb  | Pb    | Ni        | Cu        | Cd   | ı   | as Ba   | As   |
|   | 370 | 1.2 | 1.0 | 11    | 110       | 61        | nd   | C   | 2 10    | 62   |
| - |     |     |     |       |           |           |      |     |         |      |

nd: not detected

Cannot be accepted in azardous waste landfills (DOC 1000 mg/kg, Council Decision 2003/33/EC)

| Standard leaching test EN 12457-2 | (L/S 10 L/kg, 24 h, 10 rpm) |
|-----------------------------------|-----------------------------|

| рН      | EC   | (mS/ | cm) Red  | ox (mV | <b>/) C</b> | r(VI) (n | ng/kg)       | )       |       |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|------|------|----------|--------|-------------|----------|--------------|---------|-------|----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.3     |      | 3.2  |          | +146   |             | nd       | $\mathbf{)}$ |         |       |    | _    | and the second sec |
|         |      |      |          |        |             | mg/      | 'kg of d     | lry sub | stanc | e  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| As      | Ba   | Cd   | Cr ολικό | Cu     | Ni          | Pb       | Sb           | Se      | Zn    | F- | Cl-  | SO4 <sup>2-</sup> DOC TDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.4     | nd   | nd   | 40.2     | 1.1    | 2.2         | 0.08     | 0.02         | 0.05    | 0.8   | nd | 6050 | 9650 3400 34000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| nd: not | dete | cted |          |        |             |          |              |         |       |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## Characterization of Cr-RTW (2/2) Structural characterization

#### X-ray Diffraction Spectroscopy (XRD) & Scanning Electron Microscopy (SEM)



<sup>6&</sup>lt;sup>th</sup> International Conference on Sustainable Solid Waste Management, Naxos Greece, 13-16 June 2018

### Thermal treatment (1/4) Mass loss under oxic conditions



#### Differential Thermal Analysis DTA

- Endothermic peak at 120°C: Evaporation of moisture
- Exothermic peak at 250–500°C: Decomposition of organic content
- > Endothermic peak at  $700^{\circ}$ C: Decomposition of CaCO<sub>3</sub>
- Endothermic peak at 960°C:
  Decomposition of ion chromate

#### Thermal Gravimetric Analysis TGA

- Total mass loss (up to 1200°C): 61%
- Mass loss up to 500°C: 55%
  (90% of total mass loss)
- Cr content of ash: 19 wt.%

# Thermal treatment (2/4) Anoxic conditions

**Thermal treatment** of Cr-RTW under **anoxic conditions**:

- ➢ Temperature 400−600°C
- ➢ Duration 20−90 min





- Cr content of ash: 16 wt.%
- Cr(VI) determination spectrophotometrically
- Structural characterization using XRD

<sup>6</sup>th International Conference on Sustainable Solid Waste Management, Naxos Greece, 13-16 June 2018

# Thermal treatment (3/4) Anoxic conditions

- > Cr(III) to Cr(VI) oxidation was restricted significantly
- Increase in temperature, as well as in duration of thermal treatment of Cr-RTW enhances Cr(III) to Cr(VI) oxidation

| θ (°C)     | t (min) | Cr(VI) (wt.%) | % Cr(VI)/Cr total |
|------------|---------|---------------|-------------------|
| 400        | 20      | nd            | -                 |
| 400        | 60      | nd            | -                 |
| 400        | 90      | nd            | -                 |
| 400        | 120     | 0.9           | 5.6               |
| 500        | 30      | 0.1           | 0.6               |
| 500        | 60      | 0.3           | 1.9               |
| 600        | 20      | 1.2           | 7.5               |
| nd: not de | etected |               |                   |

- > Cr-RTW ash from thermal treatment at 500°C for 60 min was used for Cr recovery
- Mass loss at 500°C and 60 min thermal treatment duration: 46%
- ➢ Cr content of Cr-RTW ash: 16 wt.%

<sup>6</sup>th International Conference on Sustainable Solid Waste Management, Naxos Greece, 13-16 June 2018

# Thermal treatment (4/4) Anoxic conditions



- Main crystalline phase of tannery ash: CaCO<sub>3</sub>
- No crystalline phase with Cr(III) was detected
- An amorphous phase of Cr(III) was formed with low solubility in water

<sup>6</sup>th International Conference on Sustainable Solid Waste Management, Naxos Greece, 13-16 June 2018

# Hydrometallurgical Cr recovery (1/7) Experimental

Cr recovery from Cr-RTW (<1 mm) or from its ash under anoxic conditions

#### **Cr leaching** in various conditions:

- pH (1,0–2,0)
- Contact time (30–180 min)
- Temperature (25–60°C)
- Liquid/Solid ratio (L/S) (20–50 L/kg)
- Leaching solvent ( $H_2SO_4$  or HCl)

### Cr precipitation:

- MgO,  $Ca(OH)_2$  or NaOH
- pH 8.0–9.0

### Cr(OH)<sub>3</sub> dissolution:

- $H_2SO_4 5 N$
- Determination of Cr and impurities



<sup>6</sup>th International Conference on Sustainable Solid Waste Management, Naxos Greece, 13-16 June 2018

### Hydrometallurgical Cr recovery (2/7) From Cr-RTW

- **Cr leaching** using  $H_2SO_4$  (L/S 50 L/kg) altering:
- (a) Contact time (30–180 min)
- (b) Temperature (40–60°C)

- Cr leaching is increased increasing the contact time of leaching solvent with the waste and increasing the temperature.
- Contact time is limited to 100 min and temperature to 60°C.
- After 90 min the Cr leaching rate is reduced significantly.
- Any increase in temperature results in cost increase of the procedure.



## Hydrometallurgical Cr recovery (3/7) From Cr-RTW

#### **Cr leaching** using H<sub>2</sub>SO<sub>4</sub>, altering:

(a) pH (1,0–2,0)

(b) Liquid/Solid ratio (L/S) (20, 25 & 50 L/kg)



- Cr leaching is increased decreasing the pH value of the leaching solvent and increasing the L/S ratio.
- $\succ$  L/S ratio is limited to 25 L/kg.
- Higher L/S ratios are not desirable, because they result in increasing water consumption and process cost.

pH 1, 60°C , 100 min

| L/S (L/kg) | % leaching Cr |
|------------|---------------|
| 20         | 89.7          |
| 25         | 97.0          |
| 50         | 97.2          |

<sup>(</sup>b)

## Hydrometallurgical Cr recovery (4/7) From Cr-RTW

#### Cr leaching altering:

• Leaching solvent ( $H_2SO_4$  or HCl)

| pH 1, 60°C, 100 min, L/S 25 L/Kg |               |  |  |  |  |
|----------------------------------|---------------|--|--|--|--|
| Solvent                          | % leaching Cr |  |  |  |  |
| H <sub>2</sub> SO <sub>4</sub>   | 97.0          |  |  |  |  |
| HCl                              | 69.7          |  |  |  |  |
|                                  |               |  |  |  |  |

- > The percentage of Cr leaching using  $H_2SO_4$  comes up to 97% of Cr content.
- Selectivity of H<sub>2</sub>SO<sub>4</sub> Cr leaching comparing to HCl.

#### **Impurities in leachates**

|                                | wt.% |     |     |     |  |
|--------------------------------|------|-----|-----|-----|--|
| Solvent                        | Ca   | Mg  | Na  | DOC |  |
| H <sub>2</sub> SO <sub>4</sub> | 1.7  | 1.3 | 0.7 | 2.2 |  |
| HCl                            | 9.0  | 1.3 | 0.7 | 2.3 |  |

- $H_2SO_4$  forms CaSO<sub>4</sub>, which is precipitated as sediment.
- HCl forms CaCl<sub>2</sub>, which is soluble in water. As a result, Ca remains in the solution.



<sup>6</sup>th International Conference on Sustainable Solid Waste Management, Naxos Greece, 13-16 June 2018

## Hydrometallurgical Cr recovery (5/7) From Cr-RTW

#### **Cr precipitation**

Cr in initial solution 3370 mg/L

|     | <b>Residual Cr (mg/L)</b> |                     |      |  |  |  |
|-----|---------------------------|---------------------|------|--|--|--|
| pН  | MgO                       | Ca(OH) <sub>2</sub> | NaOH |  |  |  |
| 8.0 | 2.1                       | 1.2                 | 2.1  |  |  |  |
| 8.5 | 1.6                       | 0.4                 | 2.0  |  |  |  |
| 9.0 | 1.1                       | 0.3                 | 0.8  |  |  |  |

- Cr shows low solubility at pH 8,0–9,0, according to bibliography.
- > Cr precipitation is effective using all 3 reagents.
- > NaOH is a more handy reagent than  $Ca(OH)_2$ and MgO.
- $\succ$  Ca(OH)<sub>2</sub> and MgO generate a lot of solids.

#### $Cr(OH)_3$

 $\succ$  Cr(OH)<sub>3</sub> precipitation at pH 8.0 using NaOH.

|    |     | <b>wt.%</b> |      |     |
|----|-----|-------------|------|-----|
| Cr | Ca  | Mg          | Na   | С   |
| 59 | 6.3 | 1.5         | 0.06 | 3.5 |



 Simple, easy and low-cost procedure for Cr leaching.

<sup>6</sup>th International Conference on Sustainable Solid Waste Management, Naxos Greece, 13-16 June 2018

## Hydrometallurgical Cr recovery (6/7) From Cr-RTW ash

**Cr leaching** using  $H_2SO_4$  (L/S 50 L/kg) altering:

- (a) Contact time (60–180 min)
- (b) Temperature (25–60°C)

(c) pH (1,0-2,0)

- Cr leaching is increased increasing the contact time of leaching solvent with the ash, decreasing the pH value and increasing the temperature.
- However, the percentage of Cr leaching is low (28% at 60°C for 120 min at pH 1.0).
- 1,9% of leaching Cr is Cr(VI), which is more soluble than Cr(III).



<sup>6</sup>th International Conference on Sustainable Solid Waste Management, Naxos Greece, 13-16 June 2018

## Hydrometallurgical Cr recovery (7/7) From Cr-RTW ash

#### **Cr leaching** altering:

• Leaching solvent ( $H_2SO_4$  or HCl)

| Solvent       | θ (°C) | t (min) | Cr (wt.%) | % leaching Cr |
|---------------|--------|---------|-----------|---------------|
| $H_2SO_4 5 N$ | 25     | 30      | 2.6       | 16.2          |
| HCl 5 N       | 25     | 30      | 3.4       | 21.1          |
| HCl 5 N       | 60     | 120     | 10.0      | 62.5          |



#### **Impurities in leachates**

| HCl 5 N, 60ºC, 120 min |     |     |     |  |  |  |
|------------------------|-----|-----|-----|--|--|--|
| wt.%                   |     |     |     |  |  |  |
| Ca                     | Mg  | Na  | DOC |  |  |  |
| 14.7                   | 2.4 | 1.3 | 3.9 |  |  |  |
|                        |     |     |     |  |  |  |

- Cr leaching with HCl 5 N (60°C, 120 min) is up to 62,5% of total Cr content.
- > The leachate contains Ca 14.7 wt.%, while Cr only 10 wt.%.
- > It is observed a difficulty in leaching Cr from Cr-RTW ash, because of the amorphous phase of  $Cr_2O_3$ , which is low soluble in acid solutions.
- $\succ$  CaCl<sub>2</sub> is high soluble in water and is re-dissolved.



#### **Thermal treatment of Cr-RTW under anoxic conditions**

> During thermal treatment of Cr-RTW under anoxic conditions, the oxidation of Cr(III) to Cr(VI) is reduced to minimum. Cr(III) forms an amorphous and almost insoluble phase  $(Cr_2O_3)$ .

#### **Hydrometallurgical Cr recovery**

- > Cr leaching from Cr-RTW using  $H_2SO_4$  reaches 97%, while Cr leaching from Cr-RTW ash is more difficult than the initial waste, specifically 62.5% of total Cr content using HCl.
- >  $H_2SO_4$  consists a better leaching solvent of Cr(III) than HCl. The HCl solvent forms the soluble CaCl<sub>2</sub>, while the  $H_2SO_4$  solvent forms the CaSO<sub>4</sub>, which is precipitated.
- The solid Cr(OH)<sub>3</sub>, which is produced by Cr(III) precipitation with NaOH at pH 8.0, contains 59 wt.% Cr and it can be used in tannery process.

<sup>6</sup>th International Conference on Sustainable Solid Waste Management, Naxos Greece, 13-16 June 2018

# Acknowledgements NAXOS2018

We acknowledge support of this work by the project "Invalor" (MIS 5002495), which is implemented under the Action <u>"Reinforcement</u> of the Research and Innovation Infrastructure", funded by the Operational Program "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).

<sup>6</sup>th International Conference on Sustainable Solid Waste Management, Naxos Greece, 13-16 June 2018

# Thank you for your attention

### Prof. A.I. Zouboulis e-mail: zoubouli@chem.auth.gr

