Effect of the Hydraulic Retention Time (HRT) on the efficiency of a two-stage anaerobic digestion with intermediate treatments for Waste Activated Sludge (WAS)

A. Cerutti¹, G. Campo¹, M.C. Zanetti¹, L. Polimeno¹, G. Scibilia², E. Lorenzi², B. Ruffino¹

¹Department Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, I-10129, Italy
²SMAT S.p.A., Società Metropolitana Acque Torino, Castiglione Torinese (TO), I-10090, Italy
Pre- vs. Intermediate Treatments

How different Hydraulic Retention Times (HRT) affect the efficiency of a two-stage anaerobic digestion with intermediate treatments for Waste Activated Sludge (WAS) in terms of biogas production?

Adapted from Molokwu & Rus, 20th European Biosolids & Organic Resources Conference, 9-11 November, 2015, Manchester UK
Materials and Methods

10 L C.S.T.R. MESOPHILIC DIGESTER – HRT X

INTERMEDIATE HYBRID TREATMENT

6, 6L MESOPHILIC BATCH REACTORS

PRE-THICKENED WAS (TS, VS, pH, FOS / TAC)

BIOGAS (CH₄, CO₂, O₂, Bal.)

sCOD_{before}, sCOD_{after}, pH, FOS-TAC

I.H.P. 90 °C
90 °C- NaOH 4% TS

DIGESTATE (TS, VS, pH, FOS / TAC)

DIGESTATE (TS, VS, pH, FOS / TAC)

BIOGAS (CH₄, CO₂, O₂, Bal.)

10 L C.S.T.R. H.R.T. X

1st STEP | 5 days
2nd STEP | 10 days
3rd STEP | 15 days
Castiglione Torinese SMAT WWTP 2,300,000 e.p.

Static pre-thickener

WAS sample
Thickened from 2.5 to 3% TS

Sludge line: from pre-thickeners to digesters
Alkali agents
NaOH
Doses
4 g alkali/ 100 g TS
Contact time
90 min
Temperatures
90°C

10 L C.S.T.R. Pilot Digester, mesophilic

Intermediate treatments

Anaerobic Digestion tests

Batch, mesophilic
Substrate : inoculum = 1.6
Specific methane productions at fixed HRT, 5 - 10 - 15 days,
Semicontinuous fed CSTR 10 L pilot digester with W.A.S.

Results

- 5 d H.R.T. 0,069 Nm³ / kg VS
- 10 d H.R.T. 0,095 Nm³ / kg VS
- 15 d H.R.T. 0,109 Nm³ / kg VS

Pilot digester shutdown
CUMULATED METHANE PRODUCTIONS:
5, 10, 15 DAYS HRT CSTR 10 L + 20 DAYS BATCH A.D.

CH₄ [Nm³/kg VS]

5 d HRT
WAS CSTR 10L
HRT 5 d
0.069 Nm³/kg VS

10 d HRT
WAS CSTR 10L
HRT 10
0.095 Nm³/kg VS

15 d HRT
WAS CSTR 10L
HRT 15
0.109 Nm³/kg VS
CUMULATED METHANE PRODUCTIONS:
5, 10, 15 DAYS HRT CSTR 10 L + 20 DAYS BATCH A.D.

- Untreated digestate batch
 - 5 d HRT
 - 0.096 Nm³/kg VS
 - 10 d HRT
 - 0.069 Nm³/kg VS
 - 15 d HRT
 - 0.095 Nm³/kg VS

- Untreated digestate
 - 0.072 Nm³/kg VS

- WAS CSTR 10L
 - HRT 5 d
 - 0.069 Nm³/kg VS
 - HRT 10
 - 0.095 Nm³/kg VS
 - HRT 15
 - 0.109 Nm³/kg VS

- WAS CSTR 10L
 - 0.053 Nm³/kg VS
CUMULATED METHANE PRODUCTIONS:
5, 10, 15 DAYS HRT CSTR 10 L + 20 DAYS BATCH A.D.

- Untreated digestate batch 0,096 Nm³/kg VS
- Digestate 90 °C batch 0,136 Nm³/kg VS + 41 %
- WAS CSTR 10L HRT 5 d 0,069 Nm³/kg VS
- WAS CSTR 10L HRT 10 0,095 Nm³/kg VS
- WAS CSTR 10L HRT 15 0,109 Nm³/kg VS

- Digestate 90 °C batch 0,112 Nm³/kg VS + 56 %
- Untreated digestate batch 0,072 Nm³/kg VS

- Digestate 90 °C batch 0,100 Nm³/kg VS + 89 %
- Untreated digestate batch 0,053 Nm³/kg VS
CUMULATED METHANE PRODUCTIONS:
5, 10, 15 DAYS HRT CSTR 10 L + 20 DAYS BATCH A.D.
Conclusions

• The measurements carried out on the CSTR digester returned a methane specific production of 0.069 Nm³/kg VS, 0.095 Nm³/kg VS and 0.109 Nm³/kg VS, for the 5-day, 10-day, 15-day HRT condition respectively.

• A. d. batch tests showed that Intermediate treatments were more effective in terms of methane production on digestate carachterized by a 15 days HRT if compared to the untrated digestate with the same hrt carachteristic.

• The results indicated that, after an IHT, the difference in the overall methane specific production among the three systems was of limited extent.

• The system with a first stage HRT of 5 days performed better (+7%) in terms of s.m.p. than the systems with a longer duration of the CSTR digestion (10 and 15 days).
Effect of the Hydraulic Retention Time (HRT) on the efficiency of a two-stage anaerobic digestion with intermediate treatments for Waste Activated Sludge (WAS)

Thank you for your attention!

A. Cerutti1, G. Campo1, M.C. Zanetti1, L. Polimeno1, G. Scibilia2, E. Lorenzi2, B. Ruffino1

alberto.cerutti@polito.it

1Department Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, I-10129, Italy

2SMAT S.p.A., Società Metropolitana Acque Torino, Castiglione Torinese (TO), I-10090, Italy