

AdMaS Research Centre Faculty of Civil Engineering Brno University of Technology Czech Republic

Energy Efficiency of Dry Sewage Sludge before and after Low-temperature Microwave Pyrolysis Ing. Jakub Raček, Ph.D.

6th International Conference on Sustainable Solid Waste Management, Naxos Island, Greece, 13–16 June 2018

Energy Efficiency of Dry Sewage Sludge before and after Low-temperature Microwave Pyrolysis

Outline:

- **1. Introduction:** legislation, MP technology, products;
- **2. Materials and Methods:** MP unit, samples of sewage sludge;
- 3. Results and discussion: combustion tests;
- 4. Summarizing discussion: summary;
- 5. Conclusion: current state of Research;
- 6. Implementation: CMPUD.

1. Introduction

- Disposal of the sewage sludge (SS) is one of the important issues in EU, CR of waste management;
- disposal of SS is managed by landfilling, agricultural use and incinerations;
- landfilling is not supported by EU and direct agriculture application is limited;
- search for new ways of waste recycling and energy gain by incineration and thermal treatment of SS.

1. Introduction

- Thermal treatment: torrefaction, gasification and pyrolysis;
- pyrolysis of SS is one of the most significant challenges in WW treatment;
- content of HM, xenobiotics, micropollutants, microplastics present a hazard for direct agricultural use;
- based on the literature, the incineration and pyrolysis of SS seems to be a current suitable solution for WWTPs.

2. Materials and Methods of MP

- Laboratory (1 kg/batch) and full-scale tests (10 kg/batch) of low temperature slow microwave pyrolysis of sewage sludge were performed at AdMaS;
- the device works discontinuously, microwave generator of 3 kW power at the frequency 2.45 GHz, low pressure (800 hPa);
- level of microwave radiation depends (electromagnetic field) on the material itself, it is related to its composition, the content of dielectric components.

2. Materials and Methods of MP

- Dried sewage sludge from one WWTP from different time period (SS1, SS2);
- the products yields of SS by MP process:
- biochar yield 86.5 %;
- pyrolysis oil 7.8 %;
- pyrolysis gas 5.7 %.

2. Materials and Methods of MP

- The combustion tests (SS, BC) were carried out according to the Czech standard ČSN EN ISO 1716 (7300883);
- the energy efficiency of samples was measured by semi-automatic device (IKA C 200) at standard laboratory conditions;
- small doses (0.4-0.8 g) were prepared for measurement of energy efficiency.

3. Results and discussion

 Energy efficiency in raw SS (SS1, SS2) before MP process:

Description			The energy efficiency (MJ.kg ⁻¹)	
			Value	Average value
Laboratory MP unit	SS1	Dose 1	13.86	13.85
			13.86	
			13.83	
Small full-scale MP unit	SS2	Dose 2	12.14	12.15
			12.12	
			12.20	

3. Results and discussion

Energy in biochar after MP process:

Description			The energy efficiency (MJ.kg ⁻¹)	
			Value	Average value
Laboratory MP unit	BC1	Dose 3	14.92	16.73
			15.05	
			15.02	
		Dose 4	16.59	
			16.49	
			16.41	
		Dose 5	18.88	
			18.58	
			18.67	
Small full-scale MP unit	BC2	Dose 6	13.22	13.20
			13.47	
			12.92	

4. Summarizing discussion

- $SS1 = 13.85 \text{ MJ.kg}^{-1} \text{ and } BC1 = 16.73 \text{ MJ.kg}^{-1}$
- SS2 = 12.15 MJ.kg^{-1} and BC2 = 13.20 MJ.kg^{-1}
- combustion tests carried out by laboratory MP unit higher energy 2.88 MJ.kg⁻¹ than before MP process;
- tests curried out by small full-scale unit higher energy 1.05 MJ.kg⁻¹ after MP and its value closer to simulation real conditions at WWTP.

5. Conclusion

- The combustion tests of dried SS and biochar were carried out by the lab. and full-scale unit;
- due to legislation regulation of landfilling and agricultural use (with HM fixation) many owners and operators of WWTPs consider incineration as an immediate solution of SS disposal.

6. Implementation

- Based on the literature and our research, the compact MP unit with dryer (CMPUD) of SS was designed for energy efficiency and other use;
- we propose the implementation of this device by 3 stages at the WWTPs:
- 1) construction of SS dryer;
- 2) construction of CMPUD;
- 3) construction of biochar silo.

The scheme of the compact MP unit with dryer of SS (CMPUD)

6. Implementation

- Designed device CMPUD seems to be an acceptable solution;
- MP can be considered as suitable available technologies for eco-friendly disposal of SS for energy efficiency and agricultural use.

Energy Efficiency of Dry Sewage Sludge before and after Low-temperature Microwave Pyrolysis

Thank you for your attention

Questions???