

Information and Communication Technologies for Complex Industrial Systems and Processes

IMPROVING THE BY-PRODUCTS REUSE IN INTEGRATED STEELMAKING FACILITIES: SCENARIO ANALYSES THROUGH THE COMBINATION OF PROCESS MODELLING, SIMULATION AND OPTIMIZATION TECHNIQUES

<u>Ismael Matino</u>¹, Teresa Annunziata Branca¹, Barbara Fornai¹, Valentina Colla¹ Lea Romaniello²

¹ Scuola Superiore Sant'Anna – TeCIP Institute – ICT-COISP, Italy ² ILVA S.p.A., Italy

14th June 2018 - Naxos Island

Content

1. Introduction

2. Materials and Methods

3. Results and Discussion

- **4.** Conclusions
- **5. Future Works**

Materials and

Results and

Discussion

Conclusions

Methods

2.

3.

4

5.

Introduction

Integrated Steelmaking Industries

Solutions are researched to improve the industrial sustainability

Future Works

Introduction

Materials and 2 **Methods**

Results and 3. Discussion

Conclusions

Introduction

Matino, I., Branca, T. A., Fornai, B., Colla, V., Romaniello, L.: Improving the by-products reuse in integrated steelmaking facilities: scenario analyses through the combination of process modelling, simulation and optimization techniques. In 6th International Conference on Sustainable Solid Waste

Management NAXOS 2018

Future 5. Works

NAXOS2018

Materials and Methods

More agile, dynamic flexible and Conventional Materials and 2 supervision of: **Methods** Industrial **Theoretical studies** Process all the aspects **Experimental Campaign** • Investigation of the **Techniques** considered processes or **Detailed &** routes Holistic **Results and** 3. Industrial Discussion the interactions • Process & Byamong different **Products** sub-processes Route or route Industrial Analyses Process and processes **Conclusions** Simulation & 4. related Optimization parameters that Assessment of non-conventional • through scenarios difficult to evaluate or can be difficult to standard and test directly test due advanced to not very known tools technologies or Future 5. applications Works NAXOS2018

Materials and Methods – BOF Pre-treatment model

2. Materials and Methods

3. Results and Discussion

4. Conclusions

5. Future Works

Alcamisi, E., Colla, V., Romaniello, L.: Evaluation of a BOF slag recovery treatment combining experimental and simulation studies. In: 3rd International Conference on Sustainable Solid Waste Management TINOS 2015 Starting point

Preliminary Results about BOF slag Pre-treatment

configurations to obtain a Fe-

rich fraction and a Ca an P rich

fraction

Development of a ''digital twin'' by Aspen Plus of the suggested configuration in order to:

- evaluate the robustness of the process with different kind of BOF slag
- evaluate the suitability of different types of magnetic separation steps
- investigate possibilities of changes in configuration and in operating conditions

2.	Materials and Methods	The developed model contains some duplicator blocks to allow evaluating simultaneously: • different treatment configurations • different process units									
3.	Results and Discussion	 The following parameters can be monitored: Distributions of chemical compounds depending on cooling stage and on Particle Size Distribution (PSD) after grinding; Composition of the main fractions (e.g. ≤ 2mm and > 2mm) after 									
4.	Conclusions	 sieving; Compositions of magnetic and non-magnetic fractions after different kind of magnetic separations Manual with neodymium magnet (M) Wet High Intensity (WHI); 									
5.	Future Works	 Wet Low Intensity (LWI); Dry (D) Estimation of required energy in the grinding step based on Bond's Law. 									
SN/	AXOS2018										

Materials and Methods – BOF Pre-treatment model

1. Introduction

Materials and 2 **Methods**

Results and

Discussion

3.

4

Materials and Methods – BOF Pre-treatment model

The model has been tuned and validated by comparing results of experimentation carried out on one type of BOF slag

Examples

Future 5. **Works**

simulated Real and **cumulative PSDs** after grinding

simulated Real and composition of slag fractions after sieving

Materials and Methods – reMIND improved superstructure for by-product reuse optimization

Materials and 2 **Methods**

Results and 3. Discussion

Conclusions

5. Future **Works**

Matino, I., Colla, V., Branca, T.A., Romaniello, L.: Optimization of By-Products Reuse in the Steel Industry: Valorization of Secondary Resources with a Particular Attention on Their Pelletization. Waste and Biomass Valorization 8(8), 2569-2581 (2017).

A first reMIND superstructure to allow the optimization of byproducts routes in integrateed steelworks has been developed

mprovements

Superstructure improvement:

- inclusion of the different BOF slag magnetic separations as in the BOF slag pre-treatment model
- inclusion of three main BOF slag qualities
- removal of the choice of the oily mill scale treatment

The same **indicators** of the previous superstructure have been considered and are related to: capital and operating costs, revenues, environmental impact, quality of the output products, efficiency of treatment processes. These are the **objective functions**.

Materials and Methods – reMIND improved superstructure for by-product reuse optimization

2. Materials and Methods

3. Results and Discussion

..... sol or Rev n Internal Quar **OF** slag Magnetic a Recessory in Inter-**By-Products** quarations Justry (BOF Se Internal **FEESE** ROFS elletization To Pelletization Mill Sci To Fertiliaer lamerati le (Exter 14.00

main improvements

The reMIND improved superstructure allows:

- identifying the best route for by-products reuse
- obtaining indications about the best BOF slag quality to be reused
- suggesting the best BOF magnetic separation dipending on the different slag qualities

I. Conclusions

5. Future Works

NAXOS2018

Materials and Methods – Pellet mixture composition model

2. Materials and Methods An Aspen Plus model has been developed in order to compute the composition of pellet mixture (a possibility to reuse internally by-products) that exploits the indications and by-product combinations obtained by the other two models

2.

Results and Discussion

BOF Slag Pre-treatment Model has been exploited to evaluate the treatment of 3 qualities of BOF slags in the following configuration suggested by previous work:

Materials and cooling 1.

CaO

SiO₂

Fe_{tot}

 P_2O_5

Others

- 2. grinding and sieving
- two different magnetic separation steps 3.
 - for coarse fraction
 - for fine fraction

Results and 3. Discussion

Methods

A simultaneous evaluation of different magnetic separation techniques have been carried out

Conclusions

45%

Wet High Intensity Magnetic Separation appears the best tecnique in terms of efficiency to be used for the separation of the magnetic matter from all the three tested BOF slags

Results and Discussion

After that the results of the last simulations have been included in the superstructure as well as the others already included in the not improved superstructure, the new **reMIND superstructure** has been **exploited for** the following **two optimization studies**.

- 2. Materials and Methods
- 1. O1 multi-objective optimization that considers each indicators, except the quality index, in the objective function

3. Results and Discussion

2. O2 – global multi-objective optimization

	Discussion		External	Reuse	Pelletiza	tion	Agglome	eration	Disposal Environr Recover	nental
			01	02	01	02	01	02	01	O2
4.	Conclusions	BOF Slag A	0 %	0 %	0 %	0 %	N.A.	N.A.	100 %	100 %
		BOF Slag B	80 % (WLI)	60 % (WHI)	20 % (WLI)	40 % (WHI)	0 %	N.A.	0 %	0 %
5.	Future Works	BOF Slag C	21 %	0.6 % (WHI)	6%	0.4 % (WHI)	0 %	N.A.	73 %	99 %
		BOF Sludge	N.A.	N.A.	100 %	100 %	0 %	0 %	0 %	0 %
		Mill Scale	N.A.	N.A.	100%	0 %	0 %	100%	0 %	0 %

2.	Materials and Methods	Mass percentage of by-products in pellet mixtures obtained after the optimization studies carried out through the reMIND supestructure						
			01	02				
3.	Results and Discussion	BOF Slag A	0 %	0 %				
		BOF Slag B	30.2 %	60.7 %				
		BOF Slag C	9.0 %	0.6 %				
4.	Conclusions	BOF Sludge	38.5 %	38.7 %				
		Mill Scale	22.2 %	0 %				
5.	Future Works							

Results and Discussion

Introduction

1.

Results and Discussion

The obtained **pellet mixtures** have been included in the pellet mixture composition model in order to know their **chemical composition**

2. Materials and Methods

3. Results and Discussion

4. Conclusions

- 5. Future Works
- SiO₂ CaO C P₂O₅ Others Fe_{tot} wt % 46.4 5.2 19.5 2.8 0.4 01 25.7 02 wt % 33.9 7.6 28.1 3.0 0.7 267 Winning formula of 29.5 2.1 0.6 wt % 30.9 8.5 28.4 previous real trials
- The mixture O1 has a higher amount of iron \rightarrow mill scale is included in the mixture but it is important to take into account results from mill previous works: scale the decreases quality of pellet
- The composition of O2 is perfectly in line with the one tested in a previous work → only small differences in terms of iron content

thank you!

e-mail: <u>i.matino@santannapisa.it</u> <u>teresa.branca@santannapisa.it</u> <u>barbara.fornai@santannapisa.it</u> <u>colla@santannapisa.it</u> <u>lea.romaniello@gruppoilva.com</u>

www.ict-coisp.it

OL DE