

Naxos 2018

Wastewater from bio-waste treatment; some issues and solutions

Ketil Haarstad, Research Professor, NIBIO, Norwegian Institute for Bioeconomy Research, Department of natural resources and environment, Ås, Norway Alena Tetreault, Managing Director, EC Norway, Stavanger, Norway

Topic:

- "Bio"wastewaters; from biogas (biosolids), from waste incinerators, biowaste sorting stations (washwater)
- The removal of nutrients and dewatering
- Electrocoagulation of the wastewater
- Precipitation with zeolites

Total landfilled t/yr

Table 1. Organic waste in Norway (in tonnes, 2013). SSB, 2017.

Table 1: Organic waste in Norway (in termes, 2010). GOB, 2017.											
Category	Material recycling	Biogas	Compost	Incineration	Landfill	Other	Total	% Biogas			
Food waste/wet organic waste	1207	73944	94446	4190		148	173935	43			
Park, garden	4129	674	179936	5205		4507	194453	0.3			
Wood	41		6484	248093		114		0			
Total	5377	74618	280866	257488	0	4769	368388	20			
Sewage sludge							120000	?			
Manure							5680000				
WW from pulp							?				
Aquaculture							90000	?			

Table 2. Wastewater (ww) characteristics*

	NH ₄ -N	TOT-S	рН	El	Vol
Biogas ww	2720		7.93	18362	
Incin ww 1	170				1-2
Incin ww 2	154	302	9.2	25600	5

^{*}mg/l, μS/cm and m³/hour

Biogas wastewater = biosolids

The pH in unadjusted Incinerator wastewater: 0.4

Due to HSO4 and CO2

Bio- or circular economy

- Reuse
- Recirculate
- Reduce emissions
- Reduce pollution
- What about the economy?

What is electrocoagulation?

Direct electrical current is introduced into wastewater using metal electrodes, causing various non-spontaneous reactions.

The anode is sacrificial – the current causes the anode to dissolve and release **metal cations** typically used up as seeding for new chemical entities

Electrocoagulation — the Process

Principle:

- Coagulation of pollutants caused by the effect of
 direct current passing through wastewater
- Various chemical and physical processes occur during coagulation as a result of the redistribution of charges
- "Seeding" effect of slow dissolving of the sacrificial
 electrodes

Zeolites

Zeolites are hydrated aluminosilicate, they're solids with a relatively open, three-dimensional crystal structure built from the elements <u>aluminum</u>, oxygen, and silicon, with alkali or alkaline-Earth metals (such as sodium, potassium, and magnesium) plus <u>water</u> molecules trapped in the gaps between them.

There are about 40 naturally occurring zeolites, forming in both volcanic and sedimentary rocks; according to the US Geological Survey, the most commonly mined forms include <u>chabazite</u>, <u>clinoptilolite</u>, and <u>mordenite</u>. Dozens more artificial, synthetic zeolites (around 150) have been designed for specific purposes.

Treated biogas wastewater, separated, and EC unit & container

Removal of particles and Tot-P in the EC process

Concentration of Tot-N through the EC process (left) and of NH4-N in a batch adsorption experiment

Precipitation (CaCO₃)

Results gas WW

Conclusions

- Need for better treatment systems
- EC is a promising technology for treating wastewater from biowaste treatment systems
- Design and optimization remains

Acknowledgements

Thanks to:

HRA waste company for the biogas wastewater Oslo city for the incinerator wastewater To Alena for conducting the EC treatment