

Enhancing Anaerobic Digestion of High-solid Sludge with Coupled Ultrasonic and Alkaline Pretreatment: Mechanism Research and a Full-Scale Experiment

Prof. Ji Min, Dr. Li Ruying, Wang Fen, Zhang Bo, Zhao Yingxin

Email: jimin@tju.edu.cn School of Environmental Science and Engineering Tianjin University, Tianjin,300350, P R China

The problems and challenges of sludge in China

A fast-growing sewage plants

Sludge production from WWTPs

It is predicted that sludge production will reach more than 80 million tons (20% TS) in 2020。

2

Background

Sewa digestion technology is the current
hotspot of anaerobic sludge digestion.

pvery

Traditional AD

High Solid Concentration AD

Pretreatment-High Solid AD

Sludge pretreatment technologies for high efficiency anaerobic digestion

- Thermal hydrolysis
- Mechanical grinding
- Ozone oxidation
- □ Ultrasonic pretreatment
- Alkali pretreatment

Characteristics of combined ultrasound and alkaline pretreatment technology

6

Classification of ultrasonic reactors

>The probe is directly immersed in the reaction liquid in a probe ultrasonic reactor.

> The reaction liquid can be put into the tank in a chamber ultrasonic reactor. The probe does not contact with the liquid.

Comparison of probe and chamber ultrasonic reactors

9

Parameters	Probe reactor	Chamber	
rarameters	Probe reactor	reactor	
Number of transducer	Less	More	
Ultrasonic power	Strong	Weak	
Uniform distribution of sound field	Weak	Strong	
Radiant region	Small	Large	
Long-term stability	The probe is easy to be damaged	Attenuation of power occurs	
Equipment corrosion	Strong	Weak	
Energy consumption	High	Low	
Energy utilization efficiency	Low	High	
Feasibility of full scale application	Low	High	

The chamber reactor has a wide range of disintegration, high energy utilization efficiency and low equipment consumption, and is suitable for full scale application. In the multi probe ultrasonic reactor, a reasonable arrangement of probes, such as contralateral arrangement, can form standing waves, effectively expanding the degree of ultrasonic disintegration

Development of dense multi probe chamber ultrasonic sludge disintegration reactor

Power: 5kW (0-100% adjustable) Frequency: 20kH Volume: 250L Capacity: 5m³/h Retention time: 2-5 min Operation mode: Two reactors in series operation

Section 2-2

10

Different disintegration effects of alkaline and ultrasonic pretreatments

Effects of alkaline pretreatment on sludge dissolution

Effects of ultrasonic pretreatment on sludge dissolution

> The soluble SCOD and protein increased with the alkaline amount, but the carbohydrates dissolution was limited.

>Less SCOD and carbohydrates were dissolved by sole ultrasonic pretreatment, but the protein dissolution was very limited.

EPS disintegration by Coupled Ultrasonic and Alkaline Pretreatment

> EPS disintegration was not obvious under sole ultrasonic pretreatment.
> The disintegration degree was higher in coupled ultrasonic and alkaline pretreatment, compared to sole alkaline pretreatment.

Destruction of cell structure by coupled Ultrasound and alkaline pretreatment

Destruction of cell wall structure

Destruction of cell membrane structure

Sole ultrasonic or alkaline pretreatment had little effect on the break of cell wall and cell membrane. The coupled method had obvious disintegration effect on cell wall and cell membrane.

Effects of coupled ultrasonic and alkaline pretreatment on methane production

The effect of low power ultrasound on methane production was not obvious, and the methane yield increased by 50%-70% after coupled ultrasonic and alkaline pretreatment.

- **Raw sludge:** dewatered sludge (TS=16%-22%, VS/TS=44%-60%)
- **Pretreatment process:** The raw sludge was diluted to 8%-10% of TS, mixed for 1h after alkaline addition, and then was pumped into the continuously operated ultrasonic reactors. The flow rate of ultrasonic reactors was 5m³/h, and the HRT was 2-5min.
- Process scale: 200m³ CSTR anaerobic digester, Effective volume was about 150m³, and daily feeding was 10m³ of pretreated sludge.

Optimization of ultrasonic operation mode

Compared with the untreated group, the ultrasonic coupled alkaline pretreatment can effectively increase the methane yield.

Stability investigation —dissolution performance (SCOD increase)

17

During the operation period, compared with the SCOD of 500mg/L in untreated sludge, the concentration of SCOD was stable in the range of 3000-3500mg/L after pretreatment, indicating that the operation of the equipment was good and the performance was stable.

Economic analysis of the full scale demonstration ₁₈

Biogas production and organic loading

Energy consumption and organic loading

➢ Biogas production increased with organic loading. When organic loading was 2kg VS/m³⋅d, daily biogas production was 100-110 m³.

> The highest daily energy consumption was 65kWh, and the daily recovery power through biogas production was equivalent to 200-220kWh.

>During the operation, the recovery energy was higher than the system energy consumption, which proves that the economy of the process is feasible.

Economic analysis of the full scale demonstration 19

Comparison of energy consumption and production for untreated and pretreated sludge during anaerobic digestion

Nindge	Energy consumption_	Energy production (kWh/d)		Net energy production (kWh/d)		Extra energy production by
	of ultrasonic process (kWh/d)	Pretreated sludge	Untreated sludge	Pretreated sludge	Untreated sludge	protuction by pretreatment (kWh/t)
5	10	92	61.3	30.5	9.8	4.1
7.5	15	118	78.7	47.5	23.2	3.2
10	20	204	136.0	124.5	76.5	4.8

Under the treatment loads of 5-10 t/d, the extra energy production of the anaerobic digestion system with pretreatment process was 3.2-4.8 kWh/t, indicating that the ultrasonic pretreatment can provide additional energy harvest.

Comparison of ultrasonic equipments for sludge pretreatment

No.	Type of reactor	Volume	Power (kW)	Sludge Conc. (g/L)	Scale	Production company
1	Probe	4 L	16	90	Lab-scale	Sonico Ltd. UK
2	Probe	29 L	10	80	Full-scale	Ultra WAVES GmbH
3	Probe	4-5 L	8	100	Lab-scale	IWE Tec GmbH
4	Probe	3.5 L	6	20-40	Lab-scale	Ulu Pandan Water Reclamation Plant, Singapore
5	Probe	1-30 L	2-48	<100	Full-scale	IWE Tec GmbH
6	Chamber	7.5 L	0.9	-	Lab-scale	Gogate et al.
7	Chamber	25 L	0.6	-	Full-scale	Sonico Ltd.
This study	Chamber	240L	10	80	Full-scale	Tianjin university

Currently, most applications of ultrasonic reactors is the probe ultrasonic reactor. And the scale of the reactor is small and the treatment capacity is limited.

> There are still few applications of the chamber ultrasonic reactor in the world.

Comparison of energy consumption with other Full-scale pretreatment technologies

Pretreatment method	No.	Energy consumption (kWh/m ³)	Theoretical biogas increase requirement for energy consumption (%)
ultrasonic	1	6.4	14.8
	2	10	18.6
Pulse static electricity	3	16	49.5
	4	15	55.7
High pressure homogenization	5	53.6	187.6
	6	40	123.7
Ball grinder	7	21	59.9
Centrifugal breaking	8	12	34.3
	9	4.2	11.1
Thermal hydrolysis	10	61	146.7
	11	115.5	50.5
	12	152	66.5
	13	49.5	29.8
Thermal hydrolysis combined with	14	10.2	8.7
heat and power cogeneration	15	6.4	2.3
	16	5	2.6
Ultrasonic in this study	17	2	10

Compared with various pretreatment techniques in literature, the energy consumption of the ultrasonic reactor in this study is relatively lower. In order to achieve the theoretical energy consumption balance, the biogas production after pretreatment should be increased by 10%. Actually, in this study, the biogas production increased by 50%.

 A full scale multi probe and low power chamber ultrasonic reactor with full scale has been developed.

The synergistic effect of ultrasonic coupled alkaline solution can increase the disintegration degree of sludge and improve the energy efficiency of anaerobic digestion.

The anaerobic digestion system with the ultrasonic coupled alkaline pretreatment system has a more net energy production.

THANK YOU

Research group of water pollution control and resource utilization School of Environmental Scince and Engineering, Tianjin University, Tianjin, China Email: jimin@tju.edu.cn