

A feasible application of circular economy: spent grain energy recovery in the beer industry

Isabel Ortiz, Y. Torreiro, G. Molina, M. Maroño, J.M. Sánchez.

Energy valorisation of fuels and waste unit. Energy department. CIEMAT. Madrid, Spain.

Summary

- Introduction (beer industry, beer residues, energy necessities)
 - Beer industry
 - Beer residues: BSG
 - Energy requirements
- Valorization of Beer Spent Grain (BSG)
- BSG characterization
- Integration of BSG gasification in a craft brewing
- Conclusions

Introduction

Introduction

Gasification of BSG

Diminish waste volume Reduce energy from fossil fuels

Valorization of BSG

Biogas production

- Most common
- ✓ No drying
- Long degradation rates/retention time
- Technical know-how
- High OPEX and CAPEX

Combustion/Gasification

Combustion

- ✓ Good LHV
- Drying necessary
- Emission (particles, SOx, NOx)

Gasification

- ✓ Good LHV
- Drying necessary
- ✓ Versatile
- ✓ Low environmental impact
- High electrical performance

BSG characterization

Pretreatment of BSG

Non-renowable sources 9%

Renowable sources 91%

Energy from nonrenewable sources: 192 kJ/kg

Energy consumption = 900 kJ/kg

Gasification of BSG

Integrated solution

Integrated solution

Conclusions

- Reduce of fossil fuels (12 22 %)
- Avoid CO2 emissions
- Help to mitigate climate change
- Reduce the waste volume

Thank you for your attention

isabel.ortiz@ciemat.es