

An Evaluation of Sludge-to-Energy Recovery

Methods

Jumoke Oladejo MSc, BEng

New Materials Institute

13th June 2018

University of Nottingham

Outline **Overview Pre-Processing Anaerobic Digestion Combustion Pyrolysis** 0 Gasification **Conclusion** 0

NAXOS2018

6th International Conference on Sustainable Solid Waste Management

13-16 June 2018

Sewage Sludge.... Waste or Resource?

University of Nottingham UK | CHINA | MALAYSIA

16

What is Sewage Sludge

Global water use

Waste Water treatment Facility

Sewage Sludge

University of Nottingham UK I CHINA I MALAYSIA

Sewage Sludge Use

Treated Sludge can be used for various agricultural, construction or energy applications. However, landfilling and incineration remains prominent.

So, What are the drawbacks to "sewage sludge" present use?

- Growing waste management issues
- Hindering policies and regulations for carbon disposals
- Increasing price of disposal
- Wastage of potential resource
- Pollutants considerations

Landfill or Buried dumping

Dumping into Water bodies

Energy Recovery from Sludge

Sludge - to - Energy Recovery Methodss

University of Nottingham

UK | CHINA | MALAYSIA

First principle of circular economy: "Waste is either a resource, food, energy *or money.....*" *"zero* waste and pollution"

Pre-Processing of Sludge

Sludge thickening, dewatering and drying process

Sludge Thickening – similar to sedimentary tanks for increasing solid contents by removal of some liquid fraction Sludge Dewatering – Use of mechanical or chemical assisted system to reduce water content Sludge Drying – Use of thermal treatment to obtain granular sludge that can be easily handled

University of

Nottingham

Anaerobic Digestion

- □ Biological process for biogas production
- Globally accepted and technologically mature.
- □ Biogas (60 70% methane)
- □ Energy content of biogas 13 21 MJ/kg³
- Potential to offset 50% energy requirement
 Risk of non-utilisation or flaring of biogas
- □ Profitability dependent on scale
- □ Improvement of digestion rate
- □ Enhancement of biogas yield and quality

Current research focussed on various chemical, mechanical and thermal pretreatment methods to enhance digestion rate and yield.

Combustion

- High temperature oxidation for heat and electricity generation
- **Technologically mature process**
- □ Flue gas cleaning facility

University of

- Operation challenges moisture and ash content
- □ Moisture = inefficiency and low heating value
- Ash slagging = inefficiency and reactor maintenance
- **C**O-utilization with coal or biomass

Technology

Benefits

Mature and well known technology
 Heat and electricity generation potential
 Negligible organic pollutant from flue gas
 Limitations

- Sludge with high moisture content is not suitable, dewatering is required. - Waste ash would require disposal or reuse

Social and Environment

Benefits

- Potential of co-utilization with other solid fuels for reducing GHG

- Easy integration of pollutant capture technologies

Limitations

- CO2, NOx and SOx emission

- Public acceptability challenge especially siting facility near residential areas

COMBUSTION

Economics

Benefits

Usage of existing infrastructure
Co-firing with other solid fuels provides cost saving potential
Energy saving potential for sludge treatment plants

Limitations

- High cost of flue gas cleaning technology - High cost of ash disposal - Strict pollutant control on technology

Future Research Focus

- Ash slagging, sintering and corrosion issues

Ash reuse prospects

- Heavy metals emissions

- Economic and energy efficient preprocessing drying techniques

Current research focussed on pre-treatments, optimisation of combustion parameters, catalysts usage, minimisation of pollutants formation, and heavy metals retention in ash to improve combustion suitability and minimise deterrent factors.

Pyrolysis

- Inert atmosphere thermal decomposition for bio-oil, char and gas.
- □ Not a technologically mature process
- □ Bio-oil with ~ 33 MJ/Kg heating value
- □ Negligible pollutant and heavy metal emission
- Operation challenges moisture and char content
- □ Moisture = inefficiency, low oil quality.
- Char = Ash catalytic cracking, disposal or use in circular economy

Current research focussed on pre-treatments, optimisation of pyrolysis parameters to enhance bio-oil and gas yield, catalysts, minimisation of pollutants or heavy metals emission, downstream use of yields to ensure profitability and efficiency of technology.

Gasification

- Partially oxidized thermal decomposition for gaseous yield.
- □ Not a technologically mature process
- $\hfill\square$ Synthesis gas with ~ 4 12 MJ/m³

University of

- Pollutants formation H2S, NH3, SOx & NOx
- □ Moisture = inefficiency, tar formation.
- Ash = clinker formation, heavy metal emissions, disposal or use

Current research focussed on pre-treatments, optimisation of gasifier parameters to enhance syngas and H₂ yield, catalysts and minimisation of tar, pollutants and heavy metals emission to ensure profitability and efficiency of technology.

Concluding Remarks

- Environmental limitations of sludge disposal requires its use as a resource
- Further work in sludge characterization, co-utilization of sludge, operating condition optimization required.
- High moisture and ash content are the main obstacle.
- Use of catalysts, coupling of various technologies and co-use of sludge with other fuel types are high potential routes for future commercial scale-up.
- In-depth feasibility, technical, economic, social and life cycle assessment required for establishing suitability in the low carbon circular economy.

University of Nottingham uk | CHINA | MALAYSIA

University of Nottingham UK | CHINA | MALAYSIA

Questions???