The alkali-activation of construction and demolition waste (CDW) components for stabilization purposes

Marco Bassani\(^{(1)}\), Luca Tefa\(^{(1)}\), Paola Palmero\(^{(2)}\).

\(^{(1)}\) Department of Environment, Land and Infrastructures Engineering
\(^{(2)}\) Department of Applied Science and Technology,
Introduction

CONSTRUCTION AND DEMOLITION WASTE (CDW)
Waste material produced in the process of construction, renovation, or demolition of buildings and infrastructures.
(US EPA, United States Environmental Protection Agency)

- concrete
- bricks and tiles
- asphalt
- natural aggregates and excavated soil
- impurities (metals, wood, glass, plastic)

Production and recycling
EU-28 (2014):
868 million of tons of CDW per year
(1/3 of total waste generated in EU)
Average recycling rate: 46 %
(European waste statistics)
Motivation and interest

- recycling and re-using policies of Europe
- increasing demand for sustainable infrastructures
- reduction of exploitation of natural resources
- environmental and economic benefits

From waste to resource...

CDW AGGREGATE USES

Improving performances in terms of strength, stiffness, and durability

Stabilization techniques

- addition of cementitious binders
- no addition of binders

Alkali-activation
Research objective

Coarse particles d>0.125 mm
Fine particles d<0.125 mm
Binding attitude exhibited by the most reactive phase

Alkali-activation of CDW fines

CDW aggregates in 4 components:
- RC (recycled concrete)
- RA (recycled asphalt)
- BT (bricks and tiles)
- NA (natural aggregates)

UND (undivided CDW)
Fines characterization

Physical characterization
- Particle size distribution, density

Chemical analysis
- X-ray diffraction

X-ray diffraction test (XRD)

XRD patterns

<table>
<thead>
<tr>
<th>Mineral phases</th>
<th>RC</th>
<th>RA</th>
<th>BT</th>
<th>NA</th>
<th>UND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminosilicates (%)</td>
<td>23.3</td>
<td>29.7</td>
<td>63.6</td>
<td>30.1</td>
<td>56.8</td>
</tr>
<tr>
<td>Minerals from mica group (%)</td>
<td>15.2</td>
<td>11.9</td>
<td>30.3</td>
<td>n.a.</td>
<td>22.7</td>
</tr>
<tr>
<td>Carbonates (%)</td>
<td>26.0</td>
<td>13.9</td>
<td>6.1</td>
<td>17.2</td>
<td>11.8</td>
</tr>
<tr>
<td>Quartz (%)</td>
<td>9.1</td>
<td>9.9</td>
<td>22.2</td>
<td>8.5</td>
<td>14.7</td>
</tr>
</tbody>
</table>

Semi-quantitative phase analysis

Aluminosilicates in all components (especially BT and UND) essential for alkali-activation process.
Alkali-activation of fines

CDW fines
- RC, RA, BT, NA
- UND

2 size fractions:
- d < 0.063 mm
- 0.063 mm ≤ d < 0.125 mm

Activating alkaline solution (AAS)
(10% NaOH + 29% Na$_2$SiO$_3$ + 61% H$_2$O)

3 concentrations:
- 100% → AAS$_{100\%}$
- 75% → AAS$_{75\%}$
- 50% → AAS$_{50\%}$

$\frac{\text{liquid}}{\text{solid}} = 0.4$

Mixing

Casting (Prisms 20x20x80 mm)

Curing
- room temperature
- 3, 7, 28 days
Characterization of mixtures

Properties of fresh mixtures

Viscosity

MIXTURES

Mechanical properties

Strengths of hardened products

Brookfield viscometer

3-point flexural tests

Compressive tests

\[b = d = 20 \text{ mm} \]
\[L = 60 \text{ mm} \]

\[b = c = d = 20 \text{ mm} \]
Viscosity of fresh mixtures

- Viscosity decreases with revolution speed (non-Newtonian)
- Viscosity increases with AAS concentration
- Different viscosity for each component
- Highest values for UND and RC, lowest one for NA

Workability during compaction

The alkali-activation of CDW components for stabilization purposes
Luca Tefa
6th International Conference on Sustainable Solid Waste Management, Naxos, Greece - 2018
Flexural strength

- improvement of flexural strength (σ_f) with curing time
- σ_f strongly influenced by the AAS concentration and the component of CDW
- σ_f of RC, BT, NA higher with AAS_75%; RA, UND more active with AAS_100%
- UND shows the highest σ_f (for different curing time) \Rightarrow 5.0 MPa
Compressive strength

- similar behavior of flexural strength results ($\sigma_c \approx 3 \sigma_f$)
- σ_c of samples with AAS_75% and AAS_100% >> AAS_50%
- σ_c of RC and NA higher with AAS_75% than AAS_100%
- BT and UND → rich of aluminosilicates → highest σ_c
Conclusions

<table>
<thead>
<tr>
<th>Chemical analysis</th>
<th>Presence of aluminosilicate phases in all components (RC, RA, BT, NA, UND) potentially reactive in alkaline environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical properties</td>
<td>Key role of concentration of AAS both in workability of fresh mixtures and in strength development</td>
</tr>
</tbody>
</table>
| | • σ_c and σ_f increase with curing time
| | • better performances for BT and UND (aluminosilicate and mica-group phases) |
| | Huge variability in mechanical behavior
| | Best mechanical strengths for UND component (calcium-reach and alumina-silicate phases \rightarrow geopolymers and C-S-H) |

AAS+CDW powders (d<0.125 mm) increase strengths without any thermal treatment and binder addition
Future perspectives

From mixtures of fine particles...

... to stabilized CDW aggregates

- lab scale
- full scale application
Thank you!

The alkali-activation of construction and demolition waste (CDW) components for stabilization purposes

Marco Bassani(1), Luca Tefa(1), Paola Palmero(2)

(1) Department of Environment, Land and Infrastructures Engineering
(2) Department of Applied Science and Technology

luca.tefa@polito.it
Additional information (I)

- Particle size distribution

![Particle size distribution graphs]

\[d < 0.063 \text{ mm}\]

\[0.063 \text{ mm} \leq d < 0.125 \text{ mm}\]
Additional information (II)

- Density

<table>
<thead>
<tr>
<th>Component</th>
<th>Particle size [μm]</th>
<th>Particle density ρ_p [Mg/m³]</th>
<th>Bulk density ρ_b [Mg/m³]</th>
<th>Rigden porosity ν (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td><63</td>
<td>2.580</td>
<td>1.945</td>
<td>24.6</td>
</tr>
<tr>
<td></td>
<td>63 ÷ 125</td>
<td>2.687</td>
<td>1.953</td>
<td>27.3</td>
</tr>
<tr>
<td>RA</td>
<td><63</td>
<td>2.424</td>
<td>1.940</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>63 ÷ 125</td>
<td>2.347</td>
<td>1.990</td>
<td>15.2</td>
</tr>
<tr>
<td>BT</td>
<td><63</td>
<td>2.763</td>
<td>2.010</td>
<td>27.3</td>
</tr>
<tr>
<td></td>
<td>63 ÷ 125</td>
<td>2.722</td>
<td>1.946</td>
<td>28.5</td>
</tr>
<tr>
<td>NA</td>
<td>< 63</td>
<td>2.726</td>
<td>1.987</td>
<td>27.1</td>
</tr>
<tr>
<td></td>
<td>63 ÷ 125</td>
<td>2.710</td>
<td>2.025</td>
<td>25.3</td>
</tr>
<tr>
<td>UND</td>
<td>< 63</td>
<td>2.640</td>
<td>1.963</td>
<td>25.6</td>
</tr>
<tr>
<td></td>
<td>63 ÷ 125</td>
<td>2.673</td>
<td>1.963</td>
<td>26.5</td>
</tr>
</tbody>
</table>
Additional information (III)

- X-ray diffraction output pattern

RA

- Q - Quartz
- C - Calcite
- At - Antigorite
- E - Enstatite
- Cd - Cordierite
- Cl - Clinohore
- M - Muscovite
- D - Diopside

NA

- Q - Quartz
- C - Calcite
- Cd - Cordierite
- E - Enstatite
- L - Lizardite
- Cl - Clinohore
- D - Diopside
- I - Illite

UND

- Q - Quartz
- C - Calcite
- Al - Albite
- G - Gladiusite
- Ph - Phengite
- Cl - Clinohore
- A - Antigorite
- D - Diopside
Additional information (IV)

- Proportion of components in the alkaline solution

AAS_50%
- 51% H₂O
- 29% Na₂SiO₃
- 10% NaOH
- 10% additional H₂O

AAS_75%
- 7.5% NaOH
- 22% Na₂SiO₃
- 38% H₂O
- 25% additional H₂O

AAS_100%
- 5% NaOH
- 15% Na₂SiO₃
- 40% additional H₂O
- 25% H₂O