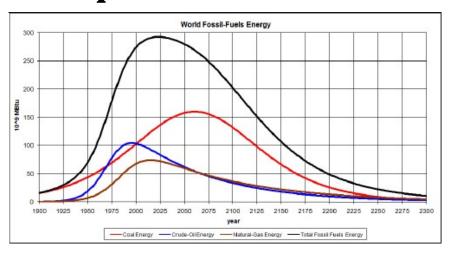


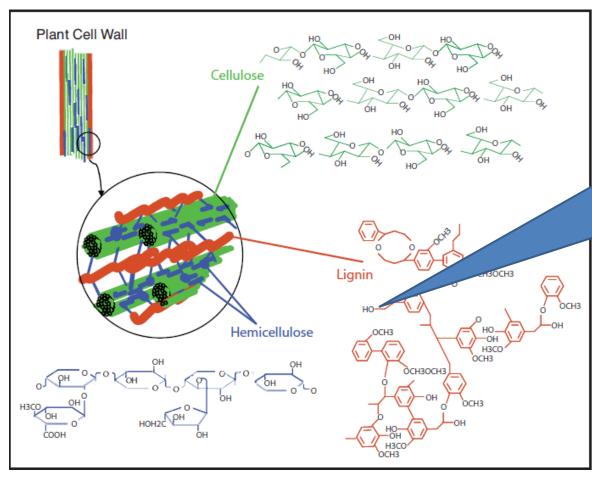
National Technical University of Athens School of Chemical Engineering Unit of Environmental Science & Technology


Effect of alkaline pretreatments on the enzymatic hydrolysis of wheat straw

N. Kontogianni, E. M. Barampouti, S. Mai, D. Malamis, M. Loizidou*

World Energy

Depletion of fossil fuel

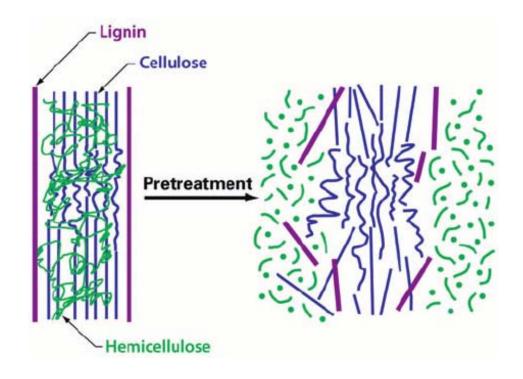

http://www.roperld.com/science/energyfuture.htm

Biofuels

- 1st generation:
 - grain or food sources
- 2nd generation:
- lignocellulosic sources and algae biomass

Agricultural waste -Lignocellulosic material

https://www.e-education.psu.edu/egee439/node/606


The major barrier to the enzymatic hydrolysis of carbohydrates towards the production of fermentable sugars

corn stover on a field credit: USDOE-NRE https://www.greenoptimistic.com

Lignocellulosic material- Pretreatments

Removal of lignin is favorable to reducing the recalcitrance of lignocellulose for enzymatic attack.

Aim

Comparison of the effects of ten alkaline pretreatment methods vis-à-vis improving enzymatic hydrolysis of wheat straw

Materials and Methods

Raw material - Wheat straw

Origin: from Aspropyrgos province. Greece

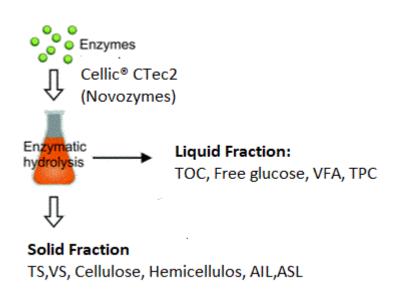
Preparation:

1. Milled (FRITSCH Cutting mill Pulverisette 15) to 1 mm

Parameter	Value (% w/w)				
Cellulose	33.8				
Hemicellulose	45.1				
Lignin	16.4				
Klason lignin	15.4				
Acid-soluble lignin	1.0				
Ash	4.7				

Pretreatment techniques of wheat straw

- (i) alkaline peroxide 5%
- (ii) alkaline peroxide 10%
- (iii) dilute NaOH 0.5M
- (iv) dilute NaOH 0.5M autoclaving
- (v) methylamine 25 %w/w
- (vi) methylamine 25 %w/w autoclaving
- (vii) Na₂CO₃ o.5M
- (viii) Na₂CO₃ o.5M autoclaving
- (ix) ammonia 25 %w/w
- (x) ammonia 25 %w/w autoclaving


Pretreatment techniques of wheat straw

A/A	Reagent	T	Solid :Liquid (w/w)	Time
i	H ₂ O ₂ (5%) NaOH (pH=11,5)	50°C	1:20	1h
ii	H ₂ O ₂ (10%) NaOH (pH=11,5)	50°C	1:20	1h
iii	NaOH o.5M	50°C	1:10	96 h
iv	NaOH o.5M	121°C	1:10	1h
v	CH ₅ N 25 %w/w	50°C	1:10	96 h
vi	CH ₅ N 25 %w/w	121°C	1:10	1h
vii	Na ₂ CO ₃ o.5M	50°C	1:10	96 h
viii	Na ₂ CO ₃ o.5M	121°C	1:10	1h
ix	NH ₃ 25 %w/w	50°C	1:10	96 h
X	NH ₃ 25 %w/w	121°C	1:10	1h

Enzymatic hydrolysis

- Raw material and pretreated solids
- > 10% w/w dry solid
- > 15μL g⁻¹ dry solid (CellicCTec2)
- > 50°C and 300 rpm for 96 h

Results and Discussion

Degradation of solid fractions after pretreatments

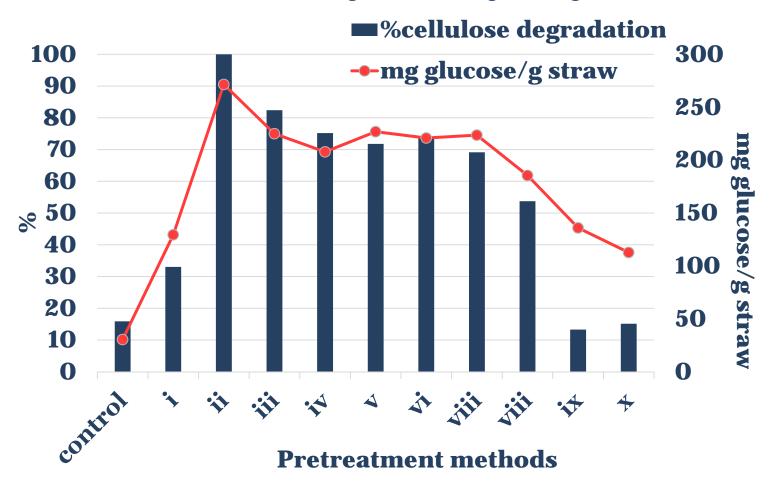
	0/ TC b	ميال	lvaia	%cellulose			%.		% <i>F</i>		%hemicellulose				
	%TS hy	orysis	degradation			degra	tion	degra	tion	degradation					
i	11.68	±	0.02	11.06	±	0.96	31.63	±	0.06	0.76	±	2.87	5.22	±	0.49
ii	28.05	±	0.20	1.88	±	1.37	89.6	±	0.68	43.99	±	0.9	17.69	±	2.21
iii	30.07	±	0.36	4.45	±	1.11	75.06	±	5.03	36.48	±	4.66	30.66	±	8.26
iv	36.47	±	2.78	33.52	±	3.44	84.86	±	0.45	49.86	±	5.72	9.29	±	7.89
v	29.84	±	0.03	22.3	±	5.63	76.38	±	1.06	99.22	±	0.09	8.66	±	9.46
vi	26.09	±	4.73	24.8	±	2.33	70.78	±	4.23	99.03	±	0.19	3.84	±	2.61
vii	11.59	±	0.37	4.87	±	1.76	38.51	±	6.92	16.99	±	2.16	1.31	±	1.72
viii	11.05	±	8.65	3.71	±	1.10	59.81	±	4.15	38.93	±	6.63	0.50	±	3.75
ix	26.75	±	1.49	44.41	±	7.35	57.31	±	2.53	99.21	±	0.01	0.90	±	1.10
x	25.00	±	2.16	17.11	±	1.17	44.83	±	7.55	99.24	±	0.04	24.41	±	2.71

(i) alkaline peroxide 5%, (ii) alkaline peroxide 10%, (iii) NaOH 0.5M, (iv) NaOH 0.5M autoclaving, (v) methylamine 25 %w/w, (vi) methylamine 25 %w/w autoclaving, (vii) Na₂CO₃ 0.5M, (viii) Na₂CO₃ 0.5M autoclaving, (ix) ammonia 25 %w/w, (x) ammonia 25 %w/w autoclaving.

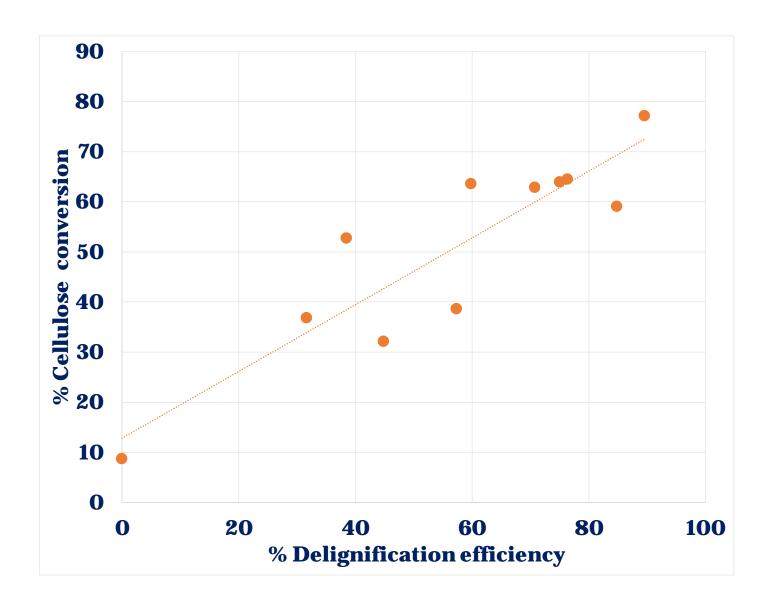
Components of liquid fractions after pretreatments

		uco a si		(mg /s	FA		TPC (mg/g straw)				
i	0.88	±	0.04	18.10	<u>±</u>	0.28	0.27	<u>±</u>	0.01		
ii	0.15	±	0.03	34.50	±	0.57	0.68	±	0.02		
iii	0.02	±	0.03	33.55	±	1.63	2.13	±	0.04		
iv	0.62	62 ± 0.06		98.30	±	14.99	5.60	±	0.14		
v	1.50	±	0.14	64.10	±	39.46	5.56	±	0.37		
vi	2.10	±	1.27	28.10	±	4.95	4.60	±	0.76		
vii	n.d.	d. ± 0.00		28.20	±	3.39	1.07	±	0.07		
viii	0.70	±	0.94	80.85	±	4.45	2.91	±	0.16		
ix	0.90	±	0.14	38.30	±	9.76	3.63	±	0.44		

(i) alkaline peroxide 5%, (ii) alkaline peroxide 50%, (iii) NaOH 3:9M, (iv) NaOH 0.5M autoclaving,


(v) methylamine 25 %w/w, (vi) methylamine 25 %w/w autoclaving, (vii) Na₂CO₃ 0.5M, (viii) Na₂CO₃ 0.5M autoclaving, (ix) ammonia 25 %w/w, (x) ammonia 25 %w/w autoclaving.

Effect of pretreatments on saccharification


		%TS			%TS %cellulose			%AIL			%A	S	L	%hemicellulose			
		hydrolysis			degradation			degradation			degradation			degradation			
	-	23.61	±	0.62	15.89	±	1.21	13.42	±	0.15	33.61	±	2.16	37.43	±	8.12	
	i	31.18	±	0.12	33.03	±	1.08	20.18	±	0.08	53.74	±	1.87	46.56	±	0.99	
	ii	95.82	±	0.25	100.0	±	2.02	100.0	±	0.78	100.0	±	0.87	100.00	±	3.11	
	iii	77.39	±	0.39	82.40	±	8.92	18.40	±	4.13	78.72	±	5.68	82.43	±	6.15	
	iv	80.72	±	3.18	75.20	±	7.58	9.94	±	0.63	80.67	±	8.65	91.81	±	10.12	
	v	74.08	±	1.13	71.79	±	6.98	3.12	±	0.95	74.08	±	2.17	85.68	±	9.26	
	vi	69.58	±	2.53	74.03	±	9.21	13.93	±	1.11	65.38	±	3.84	77.59	±	7.68	
	vii	10.36	±	2.42	53.73	±	5.36	10.25	±	1.18	44.49	±	2.02	37.29	±	7.98	
	viii	65.61	±	6.85	69.13	±	9.13	1.15	±	2.21	62.62	±	6.21	63.88	±	5.68	
	ix	40.50	±	1.87	13.29	±	5.45	2.16	±	1.23	45.47	±	1.65	66.23	±	6.21	
1	x	36.17	±	1.68	15.12	±	1.27	5.73	±	1.35	46.17	±	1.74	61.16	±	2.68	

After enzymatic hydrolysis

(i) alkaline peroxide 5%, (ii) alkaline peroxide 10%, (iii) NaOH 0.5M, (iv) NaOH 0.5M autoclaving, (v) methylamine 25 %w/w, (vi) methylamine 25 %w/w autoclaving, (vii) Na₂CO₃ 0.5M, (viii) Na₂CO₃ 0.5M autoclaving, (ix) ammonia 25 %w/w, (x) ammonia 25 %w/w autoclaving.

Conclusions

Conclusions

- 1. Alkaline pretreatments tested proved to promote delignification reactions.
- 2. $\hat{1}$ the delignification efficiency at the pretreatment $\rightarrow \hat{1}$ the glucose recovery at the enzymatic hydrolysis
- 3. Alkaline treatment with:

hydrogen peroxide 10% w/w \rightarrow 73% glucose yield NaOH 0.5M \rightarrow 60%

These pretreatments are efficient for enhancing the enzymatic digestibility of lignocellulosic crop residues to levels approaching the theoretical maximum.

Acknowledgements

The authors acknowledge funding through European Horizon 2020 NoAW (No Agro Waste, Grant no. 688338) project for supporting this work.

THANK YOU FOR YOUR ATTENTION

