

## FEDERAL UNIVERSITY OF BAHIA POLYTECHNIC SCHOOL



### Performance evaluation of a small and decentralized recycling unit as an alternative for construction and demolition waste valorization

Authors: Laís C. B. Santos, Thaís A. S. Lopes; Luciano M. Queiroz, Viviana M. Zanta



# **OVERVIEW**

City of Salvador is the capital of the state of Bahia Total resident population of just over 2,9 million inhabitants









## **OVERVIEW**

























## **OVERVIEW**





# **OBJECTIVES**

Select indicators of environmental and operational performance suitable for smaller and decentralized C&DW recycling units

Get the indicators values in a full-scale site

Perform a characterization of C&DW and recycled aggregates









| Description                                                                                                                                                                  | Characteristics                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Effective Area                                                                                                                                                               | 85 m <sup>2</sup>                                                                                                           |
| Dimensions of the C&DW storage bay                                                                                                                                           | 6.2 x 3.8 x 1.7 meters                                                                                                      |
| Dimensions of fine recycled aggregate storage bay                                                                                                                            | 4.0 x 4.1 x 1.7 meters                                                                                                      |
| Dimensions of coarse recycled aggregate storage bay                                                                                                                          | 4.0 x 3.7 x 1.7 meters                                                                                                      |
| Dimensions of the ramp for manual transport of C&DW<br>Height of the equipment considering the device for collecting the aggregate<br>Nominal capacity<br>Energy consumption | <ul><li>3.8m (length):1.0 m (high)</li><li>1.4 m</li><li>1.1 cubic meters per hour</li><li>3.0 kilowatts per hour</li></ul> |



#### **1. SELECTING THE INDICATORS**













#### Environmental performance

| Indicator               | Description                                                                                            |
|-------------------------|--------------------------------------------------------------------------------------------------------|
| Noise emission          | Measurement of sound volume (decibels).                                                                |
| Emission of particulate | Mass of pollutant by volume of air $(\mu g.m^3)$ measured during the production of recycled aggregate. |
| Water consumption       | Volume consumed per volume of recycled aggregate ( $Lm^{-3}$ ).                                        |
| Energy consumption      | Ratio between the SDRU's energy consumption and the total energy consumption of the construction site. |





















#### **Table 3**. Values of the Indicators selected for environmental performance evaluation of the SDRU

| Indicator                       | Results                             |  |
|---------------------------------|-------------------------------------|--|
| Noise emission                  | 81.6 dB <sup>(a)</sup>              |  |
| Emission of particulate matter  | $TSP = 1,460 \ \mu g.m^{-3} (^{b)}$ |  |
| Water consumption               | 0                                   |  |
| Energy consumption <sup>c</sup> | 0.16 to 0.62 (%)                    |  |

| Output                    | Total        |
|---------------------------|--------------|
| Fine recycled aggregate   | 97,539.2 kg  |
| Coarse Recycled Aggregate | 144,931.8 kg |
| Emissions to air          |              |
| Particulates              | 52.7 mg      |
| Input (electricity)       |              |
| Electricity, low voltage  | 260.8 kW     |











| Indicator                                                              | Results                      |
|------------------------------------------------------------------------|------------------------------|
| Maximum storage time of coarse recycled aggregate                      | 15 days                      |
| Maximum storage time of fine recycled aggregate                        | 25 days                      |
| Percentage of the time spent for comminution                           | 2.5%                         |
| Feeding time of the crusher                                            | 0.73h                        |
| Flow rate of C&DW crushed                                              | 0.5 a 1.1 m <sup>3</sup> per |
|                                                                        | hour                         |
| Percentage of coarse recycled aggregate obtained                       | 60.6%                        |
| Percentage of fine recycled aggregate obtained                         | 39.4%                        |
| Losses during the crushing process                                     | 8%                           |
| Idleness of crushing equipment in a working day <sup>(a)</sup>         | 2.4h                         |
| Total production time in a working day <sup>(a)</sup>                  | 4.3h                         |
| Training time                                                          | No training was              |
|                                                                        | performed                    |
| Quality of raw material                                                | 0.05%                        |
| Existence of vibration control mechanism requirement for worker safety | No                           |
| Protection of raw material to ensure crushing conditions.              | No                           |









# CONCLUSIONS

The main conclusions were:

1 - A critical review of the literature validated by the judgment of specialists allowed concluding that out of a total of 115 indicators; only 17 are applied to small and decentralized C&DW recycling facilities.

2 -The emission of particulate matter is one of the critical points. Some control measures need to be taken to ensure the safety of the operators of these small and decentralized C&DW recycling units in order to avoid risk factor for the development of cardiovascular and respiratory diseases.

3 - Applying the Lyfe Cycle Assessment approach, it was concluded that the use of the recycled aggregate in the manufacture of concrete without structural function resulted in a decrease of environmental impacts in all the categories considered.

4 - The results allow to state that the recycled aggregates obtained from the SRDU have great potential for use and valorization.





# Thank you for your Attention!!

**Email and Website:** 

email: Imqueiroz@ufba.br www.grse.ufba.br



