6th International Conference on Sustainable Solid Waste Management, Naxos Island, Greece, 13-16 June 2018

Investigation of the Effectiveness of Electrooxidation for the Treatment of Domestic Wastewater Alper Erdem Yilmaz, Onur Sozudogru, Theoni Massara, Evina Katsou, Okan Tarik Komesli

> Naxos 15th June 2018

CONTENTS

- Introduction
- Objectives
- Materials & Methods

• Results

Conclusions

INTRODUCTION

Electrochemistry = important, wide field of science (redox reactions)

Electrochemical methods nowadays widely used in municipal/industrial WW treatment (simple operation, high efficiency)

Electrooxidation (EO) quite popular (high efficiency, minimized sludge production)

EO:

- (directly/indirectly) achieve oxidation with the gases
 (O₂ & H₂) released by using the non-melting electrodes
- direct anodic EO: Ist step=pollutant adsorption onto anode; 2nd step=electron transfer from anode
- indirect anodic EO: intermediates (e.g. Cl_2 , HOCl, H_2O_2) likely to be placed on anode \rightarrow affect organic material oxidation

INTRODUCTION

EO

- •Anode = active role \rightarrow catalytic activity = most influential aspect
- Target pollutant removed by hydroxyl radicals ('OH) generated in the anode
- •(·OH) attack organic matter & break down pollutants
- •Wastewater initial pH highly important: effect on electrolytic reactions!!!
- •(·OH) radicals: pH first affected & possibly changed because of reactions

$$M + H_2O \rightarrow M(OH) + H + e^{-1}$$
(1)

 $M(\cdot OH)$ + organics $\rightarrow M$ + oxidation products (2)

OBJECTIVES

i) examine EO efficiency for lab-scale treatment of domestic wastewater

ii) define optimal treatment operating conditions(e.g. wastewater initial pH, current)

MATERIALS & METHODS

• Wastewater: storm drain in Ataturk University Campus Area (Erzurum, Turkey)

- \circ Continuous electrolytic glass cell
- o 5 stainless-steel (cathode) & 5 titanium (Ti) (anode) electrodes

COD	[mg L ⁻¹]	900-1,150
BOD	[mg L ⁻¹]	95-210
Specific conductivity	[µS cm ⁻¹]	665-1,230
Turbidity	[NTU]	59.2-170
рН	[-]	3, 5, 7, 9

Removal efficiency (%) = $((C_0 - C_t)/C_0) \times 100$

 $*C_0 = initial COD value (mg L⁻¹), C_t = COD value at time t$

Schematic diagram of the experiment setup; I: Multiparameter, 2: DC power supply, 3:Wastewater, 4:Ti anode electrode, 5: Steel cathode electrode.

RESULTS

Effect of different values for the initial wastewater pH (3, 5, 7 & 9) with different current

value applied each time (10, 15 & 20 A)

COD samples were taken & measured after 120 min

RESULTS

Variations in the solution pH during the EO for each one of different initial wastewater pH values applied (20 A)

 pH generally ↓ during the EO, independently of how high the initial wastewater applied value

Effluent pH=3.5 for an initial WW pH=9

Effluent pH=2.5 for an initial WW pH=5

CONCLUSIONS

I. initial WW pH value $\uparrow \rightarrow \text{COD removal}\uparrow$; effluent pH value under weak acidic conditions at the end of reaction 2. Current value also important since it impacts on intensity of chemical oxidation; $10 \text{ A} \rightarrow 20 \text{ A}$ resulted in \uparrow COD removal & \downarrow effluent pH values

- ✓ EO oxidation=effective treatment for domestic WW
- \checkmark Simple installation & operation
- \checkmark Potential to achieve high

