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Europe’s water service providers struggling to deliver
improved & affordable water services

o Continuous population growth
W hy o Climate change

Combining 3

N at u ra | & Natural water treatment processes
E N gl neere d * Ecological & socio-economic advantages over purely

engineered systems

Tre at m e ﬂt o Lower operational costs & energy requirements

o Conservation of natural environment

Systems?

o Zero visual obstruction

* Performance limitations
° Low temperatures
o Space restrictions
° Long residence times

o Flow variations during floods and droughts

4

Combination of natural with engineered treatment
processes to overcome limitations, improve performance &
increase treatment resilience of natural processes




Research on Combined Natural &
Engineered Treatment Systems (cNES)

Investigating & assessing the potential advantages of cNES over purely
engineered treatment systems in delivering safe, reliable and efficient water
services

Aim of the study

o Assess cNES advantages for wastewater treatment and reuse, focusing on the
energy savings and the reduction of GHG emissions

o Demonstrate the feasibility of cNES to obtain water for irrigation of public spaces in
isolated insular communities and small municipalities




The Study Site Area




Antiparos Island, Greece

Location & Administration

o Located in the Cyclades complex of the Aegean sea
o Area: 35.10 km?
o Permanent population: 1,211 inh. (cencus 2011)
o Seasonal residents & tourists: 1,000 (2012)

o Administration: Municipality of Antiparos
o Public entity
o Part of the Regional Unit of Paros

The Problem of Untreated WW
o Drivers
o Lack of infrastructure
o Isolated location
o Rapid tourism development
° Impacts on natural & socio-economic environment
o Groundwater & marine contamination

Location of Antiparos Island, Greece

o Development issues & impacts on tourism

o Suggested Solution
o The WWTP of Antiparos



The WWTP of Antiparos Island

o Constructed in May
2015 for the treatment
& reuse of municipal
wastewater

o Located at Sifneikos
Gyalos

o Area: 28,400 m?

o Mean daily design
capacity (year 2035)

o 240 m3/d during winter
(1,500 p.e.)

o 480 m3/d during
summer (3,000 p.e.)

Location of the Antiparos WWTP (Source: Google Earth, 2018)



Flow Scheme of the Antiparos cNES
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The Adopted Methodology




1. Modeling of the Antiparos cNES
(Baseline Scenario)

° Integrating sof’gwa re modelling & Hydraulic and Pollution Loads Entering the Antiparos cNES
simulation environment (Source: Egnatia S.A, 2012)
> Building a cNES by integrating libraries  |Pakameterm munit i NWinteri Nsummert
for the modeling of engineered & _ = P pp—
natural treatment processes & their ’ ’
Interactions Mean daily flow m3/d 240 480
o Evaluating the quantity & quality of kg/d 90 180
wastewater, the generated sludge & BOD, me/L 37t 375
emissions, the energy consumed & the 5
chemicals used Tos kg/d 105 210
mg/L 438 438
> Model assumptions kg/;"L ;’53 3?
o Winter duration: 8 months (245 days) ng/d 3 .
o Summer duration: 4 months (120 days) me/L = =
’ ggggrac}%% T}ﬁ%e at pre-treatment M #/100mL 10,000,000 10,000,000
o Primary sedimentation: 55% reduction °c 14 22

of TSS and 35% reduction of BOD,



The Model of the Antiparos cNES
(Baseline Scenario)

Unglanked Linyng.
Ead

&&&&&&

Sudesntation

||||||||||

mmmmmmmmmmm

Wartnl Subsuace

= |
v - -
O N
I
[} S
A Vi Subuace
| "
Vailicsl Sumurfacs i
Fiow 03 o St 2
7 i
o l -
= i

nnnnnnnnn



Assessment of the Antiparos cNES

(Baseline Scenario)

° Treatment performance was
assessed in both winter & summer
conditions

o Estimation of pollutant removal of
each treatment process

> Assessment of the ability of the
system to achieve the required
quality limits
o Greek Water Reuse Legislation (CMD
145116/2011) for the reuse of

treated effluents for unrestricted
irrigation

Provisions of the Greek Water Reuse Legislation for
the reuse of treated effluents for unrestricted irrigation
(Source: CMD 145116/2011)

Minimum

Required Secondary biological treatment
Treatment & disinfection

Level

E. Coli <200 EC/100mL

Required Ll
Quality e BODS5 <25 mg/L
Limits e TSS <35mg/L

e TN <45 mg/L



2. Design of an Activated Sludge Process for the
Antiparos WWTP (Alternative Scenario)

Biological Kinetic Parameters Set for the Design of the CAS System
(Adapted from Dimopoulou, 2011)

o Substitution of CWs &

stabilization pond with a Parameter ~~ Unit  Winter Summer
conventional activated days 10.00 500
sludge process (CAS) '
° Anoxic tank for effluent me/L 3,500.00 3,500.00
nitrification / denitrification mg/L 2.50 2.50
o Aeration tank - bioreactor days? 7.00 7.00
> Submerged aeration diffusers ) 0.07 0.07
o faer(:IC()ndary clarifier - settling mg/L 120.00 120.00
. The CAS was designed to QusshgsoD, 0G5 o06s
achieve the same effluent days™ 0.60 0.60
quality with the CWs . o on
* BODS, TS5, TN and TP gl 050 080
Monod half-saturation constant of DO, K, mg/L 0.50 0.50
> The whole system was days! 0.05 0.05
medelled 0 reach i same ssiagon, 015 015
with the baseline scenario kgVss/kgBOD;  0.10 0.10
> BODS5, TSS, TN, TP, and E. Coli % of inert suspended het. bacteria, 8 kgVSS/kgBOD, 0.20 0.20



The Model of the Antiparos WWTP
(Alternative Scenario)




3. Calculation of Energy Consumption

Baseline Scenario Alternative Scenario

o Energy consumption recorded by the o Only the energy consumption of the
electricity meter box of the plant (kWh) aeration tank was considered (following
for the first 30 months of operation the approach of Dimopoulou, 2011)

o Estimated that CWs contribute about o Calculation of daily & annual energy
10% to the total energy consumption of consumption for WW aeration (kWh/d
the plant & kWh/yr.)

o Power needed for their feeding system o Aeration flow requirement

o Selection of submerged aeration diffusers
of suitable capacity for air diffusion in the
aeration tank

o Aeration blower power requirements for
the selected submerged aeration diffusers



4a. Calculation of On-Site GHG Emissions

On-site GHG emissions are generated by the biological treatment processes

Baseline Scenario - CWs Alternative Scenario - CAS
> CH, emissions in methanogenesis > CO, emissions from biomass decay and
oxidation

o QOrganic material load in CWs
> N,O emissions from denitrification

° N,O in nitrification / denitrification of N processes

compounds by microorganisms

o TN load in CWs

> The IPCC (2014) GWP values relevant to CO, for 100-year time horizon were considered
© CH,, 28
° N,O: 265



Ab. Calculation of Off-Site GHG Emissions

Off-site GHG emissions are generated by the production of the electricity
consumed by the plant

Fuel Mixture for Greece in 2017 & GHG Emission Factors
(Source: Public Power Corporation S.A. Hellas, 2018; Shahabadi et al., 2009 )

Production Units & Interconnected System Non-interconnected GHG Emission Factor
Interconnections (%) System (%) (gr CO, e/kWh)

Lignite 30.85 0.00 877.00
Oil 0.00 82.39 604.00
Natural Gas 31.01 0.00 353.00
Hydroelectric 6.51 0.00 0.00
Renewable 19.89 17.61 0.00
Interconnections 11.74 0.00 0.00
Total 100.00 100.00 -

o Antiparos island was considered to be part of the non-interconnected system



Assessment Results




1. Treatment Performance of the Antiparos cNES
(Baseline Scenario)

o Substantial contribution of CWs in the treatment - significant pollutant reduction
° BOD5 96%
o TSS 98%
° TN 77%
° TP 14%

o Pathogen elimination by combining CWs, maturation pond & disinfection
o 88% of pathogens were removed after CWs

> 96% of pathogens entering the stabilization pond were removed

o The limits of the Greek Reuse Legislation for restricted irrigation are met - reliable
performance of the system



Pollutant Removal in the Antiparos cNES
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E. Coli Removal in the Antiparos cNES
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2. The CAS System for the Antiparos WWTP
(Alternative Scenario)

Design Parameters of the Anoxic and Aeration Tanks of the CAS

. CAS for secondary treatment _—
instead of CWs & maturation pond  Eaessbu St b IR /ATes 100 m
to achieve the same effluent Aeration Tank Volume, V,, 140 m3

qguality with the baseline scenario

Total Volume of Biological
Processes, VigraL

240 m3

Aeration Tank Depth, H, 3 m

255 (winter)
Required Air Flow Rate, Q,; Nm3/h
464 (summer)

No. of Air Blowers in 1 (winter)
Operation 2 (summer)

Air Blower Capacity 260 Nm3/h

66 (winter)
Blower Power Absorbed, P, kW
70 (summer)




3. Comparison of Scenarios: Energy Consumption
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4a. Comparison of Scenarios: On-Site GHG Emissions

140.00 . .
o Baseline Scenario - CWs

> 15.50 kg CO, e/d on winter days

100.00
> 31 kg CO, e/d on summer days
80.00
60.00
4000 o Alternative scenario —CAS
20.00 > 108.00 kg CO, e/d on winter days
0.00 . > 120.00 kg CO, e/d on summer days

Winter Summer

120.00

kg CO, e/d

m On-site emissions - CAS  m On-site emissions - CWs  ° On-site emissions from CAS about 5
times greater than those from CWs



4b. Comparison of Scenarios: Off-Site GHG Emissions

2,000.00
1,500.00 o Baseline Scenario - CWs
> 0.20 kg CO, e/d on winter days
LAy > 0.40 kg CO, e/d on summer days
500.00
L 500 o Alternative scenario —CAS
T 450
S 400 o 775.00 kg CO, e/d on winter days
O 350
s 300 > 1,515.00 kg CO, e/d on summer days
2.50
2.00
1.50
G50 o Off-site emissions from CAS about
0.00 eI mm- 4,000 times greater than those from
CWs

B Off-site emissions - CAS m Off-site emissions - CWs



4¢c. Comparison of Scenarios: Total GHG Emissions

2,000.00
i 500106 ° Baseline Scenario - CWs
> 15.60 kg CO, e/d on winter days
1,000.00 > 31 kg CO, e/d on summer days
i o Alternative scenario —CAS
50.00
c > 884.00 kg CO, e/d on winter days
2 40,00
8 > 1,635.00 kg CO, e/d on summer days
3000
20,00 o
o Total emissions from CAS about 55
i . times greater than those from CWs
0.00

Winter Summer

® Total emissions - CAS ® Total emissions - CWs



Conclusions

o cNES involving CWs can provide a competitive alternative to purely engineered systems for
WW treatment & reuse in small or isolated communities

o Environmentally friendly solution - significant energy savings & reduced GHG emissions compared to CAS based WWTPs

o Adequate removal of pollutants - effluent of suitable quality for several uses

o CWs are expected to have similarly lower operating & maintenance costs compared to CAS
o CAS process is highly mechanised and requires skilled labour & frequent maintenance
o CWs offer construction simplicity & have low maintenance needs

o QOther limiting factors: land availability, long start-up times to reach full capacity, odour generation, mosquito problems

o Consideration of the energy consumed by the sludge treatment unit to fully analyse the
energy requirements & relevant GHG emissions of a CAS system

o Similar results to the present study are expected

o Even greater difference between the two systems

> Further research on socio-economic, policy/regulatory factors & relevant market dynamics
to boost market penetration of cNES
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cNES Treatment Technologies

Pre treatment: Engineered Systems
o Screening & grit removal
o Two coarse screens
o Aerated grit chamber

> Sedimentation A0
o Two Imhoff tanks Imhoff tanks for WW sedimentation

Secondary treatment: Natural Systems
o Two Stages of Constructed Wetlands

o Six sealed beds of vertical subsurface flow,
planted with common reeds

o 4 beds for stage | (460 m? each)
o 2 beds for stage Il (750 m? each)
o Stabilization Pond
o Average depth: 1.5 m
o Minimum retention time: 7 days, during winter

The two stages of CWs & the stabilization pond

Post treatment: Engineered Systems
o Disinfection: Chlorination — Dechlorination
o Chlorination tank: Addition of NaOCI
> Dechlorination well: Addition of Na,S,0x

i




