

6th International Conference on Sustainable Solid Waste Management, Naxos, 13/06/2018

1

P. Dutournié, M. Jeguirim, L. Limousy,

2

OMWW

Introduction

- OMWW (Water ~ 80%, salts and organic compounds)
- \rightarrow Discharged and stored in natural open-air basins
 - \rightarrow soil and sub-soil contamination by percolation
 - \rightarrow during drying, a crust (plastic consistency) covers the surface and inhibits mass transfer of water, oxygen, ...

→Sterile soil, ground water and rivers contamination

Introduction

Eco-frendly alternatives...

- → Soil improver (in small amounts)
- \rightarrow Water recovery for irrigation, ...
- \rightarrow Fuel preparation (high energy content)
 - \rightarrow drying
 - \rightarrow OMWW
 - \rightarrow after impregnation on a biomass

Aim of this work

Comparison of drying opportunities

 \rightarrow OMWW

 \rightarrow after Impregnation on Sawdust (IS)

→ after Impregnation on WoodChips (IWC)

In terms of kinetics, solid by-products, water recovery, ...

Experimental section

Experimental drying tests

- \rightarrow Air temperature and flow rate controlled
- \rightarrow Study of 2 sample thicknesses (3 mm and 3 cm)
- \rightarrow Continuous mass recording,

 \rightarrow Condensation of water in a condensing boiler body cooled by a cooling unit, sampling for analyses of water for reuse purpose

 \rightarrow After drying \rightarrow heat value of solid by-products

Experimental results

Drying tests (kinetic results)

Assuming a pure diffusive transfer \rightarrow 1D unsteady model

→ For long drying period X \approx X₀ exp(- $\pi^2 D_{eff} t/e^2$)

samples	k (3 mm) (s-1)	D _{eff} (3mm) (m²/s)	k (3 cm) (s-1)	D _{eff} (3 cm) (m²/s)
IS	7.2 E-4	1.2 E-9	1.7 E-5	1.6 E-9
OMWW	5.2 E-4	0.8 E-9	2.0 E-5	1.8 E-9
IWC	-		3.1 E-5	2.8 E-9

Diffusive coefficient in agreement with data available in the literature for convective drying of wood by-products, food products or wet olive husk.

Experimental results

Drying tests - conclusion

- Impregnation of OMWW on biomass is interesting
- For a quick and effective drying need of:
 - \rightarrow Thin layer,
 - \rightarrow Regularly turn the matter

Water recovery

Recovery rate (~ 70 % of evaporated water)

	рН	ρ (μs/cm)
OMWW native	4.8	9730
IS	3.9	238
IWC	3.8	267
OMWW	3.9	293

Water recovery

Standards of water quality for irrigation

	France	Tunisia	Results
SM (mg/L)	< 15	< 30	~ 0
COD (mg/L)	< 60	< 90	In progress
Escherichia C. (CFU/100 mL)	< 250		~ 0
Conductivity (µS/cm)		< 7000	< 300
рН		6.5 - 8.5	~ 3.9

→ Additional analyses (COD, HPLC, μ GC, ...) → identification of organic compounds in solution (in progress)

By-product \rightarrow fuel preparation

After drying \rightarrow IS, IWC easily recovered.

The box is clean \rightarrow organic oily matter is adsorbed in sawdust or in wood chips

 $LHV = 16.4 (S) \rightarrow 18 \text{ MJ.kg}^{-1} (IS)$

Densification or pelletizing possible

Promising combustion tests

Conclusion

Eco-frendly alternatives to OMWW discharge and natural storage are viable

 \rightarrow Drying of impregnated material can be optimised

→ After condensation, water can be used for irrigation purpose (after pH adjustment)

→ After drying, solid by-products can be densified and used as fuel or as soil improver

Thank you for your attention