

Factorial design of phenolic extraction process from two phase olive mill waste

K. Tzathas, A. Vlysidis, G. Lyberatos, A. Vlyssides

Scope of the study

- Valorisation of the OMW from II-phase olive mills
 - Recovery of high added value compounds
 - Residual Oil
 - Phenolic compounds

- Decrease the environmental impact of this primary industrial field in Greece and in Mediterranean countries
- Necessary pretreatment steps to diminish inhibition phenomena to the biological processes that follow
 - Anaerobic digestion and/or composting
- Increase their sustainability
 - Developing novel processes leading to a range of added value products
 - Under the concept of zero waste biorefineries

INTRODUCTION

More than 95% of the global production derives from the Mediterranean area

0 χλμ

FRANCE (600 BC) 500

NATIONAL GEOGRAPHIC MAPS

The Greek situation regarding the olive oil and OMW

- In Greece there are 150 M olive trees cultivated in ~765.000 hectares
- The annual production of each tree rises up to 300 kg of olives
- The 1/3 of Greek farmers are working on cultivation of olives
- Olives and olive oil production in Greece rise up 1.750.000 t and 400.000 t, respectively
- There are around 2500 olive oil mills in Greece
 - 2100 centrifugal systems (most of them III-phases)
 - Replaced from II-phases
- -There are 20 pomace processing plants

Composition of II-phase OMW

- Moisture: 67.5%
- COD: 30 kg/m³
- Oil content: 10% (db)
- TPC: 30.5 mg/g db

Experimental Methodology for extracting the phenolic compounds

- Acid hydrolysis process
- Lab scale experiments with initial amount of OMW 100 g (67.5% of moisture)
- Design of a 2⁴ factorial experiment in order to measure the effect of four important process parameters
 - Dilution of OMW (X1)
 - Quantity of a strong acid (X2)
 - Hydrolysis Time (X3)
 - Temperature (X4)

Level	Dilution (v/w)	H ₂ SO ₄ % (v/w)	Time (min)	Temperature (°C)
1	3	3	60	70
0	2	2	45	60
-1	1	1	30	50

At the end of each run the aqueous phase was separated and analyzed

- TPC (Folin method)

- Phenolic compounds (HPLC)

Hydroxytyrosol - Tyrosol - Oleuropein

Experimental Results

Dup	X1	X2	X3	X4	HYDROXY- TYROSOL	TYROSOL	OLEUROPEIN	TDC(ma/a)
Kull	Dilution (mL)	Strong Acid (mL)	Time (min)	Temperature (oC)	mg/g Dry	mg/g Dry	mg/g Dry	TPC (mg/g)
1	100 (-1)	1 (-1)	30 (-1)	50 (-1)	5.12	3.61	1.24	19.33
2	100 (-1)	1 (-1)	30 (-1)	70 (+1)	5.93	3.94	1.27	20.61
3	100 (-1)	1 (-1)	60 (+1)	50 (-1)	5.82	3.76	1.36	19.97
4	100 (-1)	1 (-1)	60 (+1)	70 (+1)	6.01	3.56	1.15	20.59
5	100 (-1)	3 (+1)	30 (-1)	50 (-1)	6.34	3.29	1.16	19.31
6	100 (-1)	3 (+1)	30 (-1)	70 (+1)	6.26	3.74	1.33	20.29
7	100 (-1)	3 (+1)	60 (+1)	50 (-1)	6.74	3.81	1.42	20.10
8	100 (-1)	3 (+1)	60 (+1)	70 (+1)	6.83	3.99	1.33	21.90
9	300 (+1)	1 (-1)	30 (-1)	50 (-1)	5.40	3.92	1.38	21.02
10	300 (+1)	1 (-1)	30 (-1)	70 (+1)	5.14	3.86	1.37	20.46
11	300 (+1)	1 (-1)	60 (+1)	50 (-1)	5.24	4.30	1.27	22.99
12	300 (+1)	1 (-1)	60 (+1)	70 (+1)	6.01	3.95	1.22	21.17
13	300 (+1)	3 (+1)	30 (-1)	50 (-1)	6.27	3.61	1.41	22.52
14	300 (+1)	3 (+1)	30 (-1)	70 (+1)	6.25	3.47	1.34	21.25
15	300 (+1)	3 (+1)	60 (+1)	50 (-1)	6.64	4.85	1.64	25.05
16	300 (+1)	3 (+1)	60 (+1)	70 (+1)	6.41	5.14	1.73	27.73
17	200 (0)	2 (0)	45 (0)	60 (0)	6.04	3.89	1.36	21.28
18	200 (0)	2 (0)	45 (0)	60 (0)	6.08	3.76	1.41	22.27
19	200 (0)	2 (0)	45 (0)	60 (0)	6.00	3.92	1.37	20.90
20	200 (0)	2 (0)	45 (0)	60 (0)	6.07	3.93	1.30	21.62

Modelling Results from the Factorial Design

- Regarding the TPC, the significance of the model w
- R^2 between the experimental and model prediction
- Important parameters are the dilution, the hydrolys

Parameter	Estimate	t Ratio
β0	21.52	
β1	1.255	5.74
β2	0.75	3.43
β3	0.91875	4.2
β4	0.23125	1.06
β5	0.6125	2.8
β6	0.54125	2.48
β7	0.50625	2.32
β8	-0.35375	-1.62
β9	0,.9125	1.33
β10	0.1775	0.81

H20

H2SO4

-0.5

0.5

Central composite design for the most important parameters

•Finally, a central composite design was implemented 3² examining the most important parameters of the factorial design

- Dilution of OMW (X1)
- Addition of strong acid (X2)
- Hydrolysis time (X3) was decided to be examined separately as a kinetic study on the optimum conditions.
- Both hydrolysis time (X3) and temperature (X4) was set at level +1 of the FD experiment

Level	H2O (mL)	H2SO4 (mL)
1.414	350	3.5
1	335.36	3.35
0	300	3
-1	264.64	2.65
- 1.414	250	2.5

Experimental and modelling results of the CCD

H20 (mL)	H2SO4 (mL)	TPC	OLEUROPEIN	HYDROXYTY	TYROSOL
X1	X2	(mg/g)	(mg/g)	ROSOL (mg/g)	(mg/g)
1	1	15.8	1.12	5.55	3.67
1	-1	21.2	1.46	4.68	4.53
-1	1	22.3	1.27	5.8	4.52
-1	-1	17.81	1.04	6.1	2.99
1.4142	0	19	1.25	5.15	3.58
-1.4142	0	21.1	1.37	6.1	3.94
0	1.4142	24.3	1.64	6.7	4.71
0	-1.4142	23.33	1.46	5.4	4.19
0	0	21.22	1.22	5.98	3.51
0	0	20.74	1.24	5.86	3.58

Best model predictions are acquired for hydroxytyrosol output (R²=0.86)

 $Y_{hydroxytyrosol} = \beta 0 + \beta 1 X1 + \beta 2 X2 + \beta 3 X1 X2 + \beta 4 X1 X1 + \beta 5 X2 X2$

Experimental and Model predictions for the hydroxytyrosol (mg/g)

Parameter	Estimate	t Ratio	
β0	5.895		
β1	-0.3767	-4.03	
β2	0.3011	3.22	
β3	0.2925	2.21	
β4	-0.2113	-2.02	
β5	0.00125	0.01	

Optimum extraction conditions and validation on the optimum value

Optimum conditions

For X1 was 0.104 (304 mL) and For X2 was 1.414 (3.5 mL) $Y_{hydroxytyrosol} = 6.4 \text{ mg/g}$

HYDROXYTYROSOL	TYROSOL	OLEUROPEIN	
mg/g Dry	mg/g Dry	mg/g Dry	TPC (mg/g)
6.51	4.93	1.40	24.82

Recovery of phenolic compounds from treated OMW

Conclusions and Future Actions

- We illustrated an extraction process of the phenolic compounds from II-phase OMW using acid hydrolysis
- The Factorial Experiment together with the Central composite design gave us an overall extraction of Hydroxytyrosol 6.5 mg/g of dry OMW and a TPC of 24.8 mg/g of dry OMW
- Up to 80% of the initial TPC can be recovered in the aqueous phase
 - Concentration of Tyrosol reached \sim 5 mg/g of dry OMW
- Next set of experiments will be focused on the recovery of an extract rich in phenolic compounds.

Thank you for your attention

6th International Conference on Sustainable Solid Waste Management

13-16 June 2018

ORGANOHUMIKI THRAKIS

- Scope of the study
 - Valorization of the OMW from II-phase olive mills by recovering high added value phenolic compounds such as hydroxytyrosol, tyrosol and oleuropein

Introduction

- ➤ The Olive oil production and the current situation in Greece
- Experimental Methodology
 - ➢Implementing an acid hydrolysis process
 - >Optimisation of the recovery of the phenolic compounds
 - ➢ Factorial Design
 - Response surface methodology
- Conclusions and future recommendations

Modelling results (cont')

Ως προς την υδροξυτυροσόλη, το μοντέλο είναι σημαντικό σύμφωνα με το κριτήριο Fisher και το R² μεταξύ των πειραματικών και των προβλεπόμενων τιμών είναι 0.93 (βλ. σχήμα 2). Οι τιμές των παραμέτρων παρουσιάζονται στον πίνακα 4 και σημαντικές είναι το θειϊκό οξύ και ο χρόνος.

Parameter	Estimate	t Ratio
β0	6.0645	
β1	-0.07375	-1.42
β2	0.47375	9.15
β3	0.2187	4.22
β4	0.11125	2.15
β5	0.06125	1.18
β6	-0.00125	-0.02
β7	0.03125	0.6
β8	-0.01625	-0.31
β9	-0.07875	-1.52
β10	0.05375	1.04

Σχήμα 2 Πειραματικές και προβλεπόμενες τιμές ως προς την υδροξυτυροσόλη (mg/g) Πίνακας 4 Οι εκτιμήσεις των παραμέτρων του μοντέλου ως προς την υδροξυτυροσόλη