

Irrigation water use in Mediterranean islands Fresh water or wastewater reuse?

Maria K. Doula

Chronis Kolovos
Antonis Papadopoulos

Benaki Phytopathological Insitute

AgroStrat targeted intensively cultivated areas in the Med region which are under desertification risk

Among other objectives...

To propose alternative practices for reducing fresh water consumption, using as example the cultivation of pistachio trees in Aegina island.

Implementation area: Aegina island

Pistachios processing and waste generation

Pistachio nuts processing (dehulling)

Discharge of waste on soil and water bodies

For 1 tn dehulled pistachios almost 2 tn of waste are generated In Aegina island: 3500-4000tn of wastewater are generated annually

Irrigating pistachio trees

Water from from a variety of sources:

 wells, drillings, surface waters delivered through streams, ditches, canals, and reservoirs and, less frequently, from municipal supply network.

A single orchard frequently uses water from more than one source

Farmers irrigate their trees on average twice However, the common practice is to irrigate 5-7 times annually

....consequences of bad quality irrigation water

- Accumulation of Na⁺ in the root zone and of Cl⁻ in tree leaves
- Salts accumulation on soils and increase in their electrical conductivity, mainly at depths between 30-90 cm, which causes gradual but stable soil degradation.

Irrigation water monitoring

Twenty four sites were monitored periodically. For this five sampling campaigns took place, on:

- 29-30 January 2013,
- 1-5 July 2013,
- 18-23 November 2013,
- 18-22 March 2014,
- 9-14 June 2014.

Samples were collected from drillings, wells and public network

Parameters determined

pH, electrical conductivity, Na, Ca, Mg, K, HCO_3^-/CO_3^{2-} , Cl^- , SO_4^{2-} , NO_3^- , PO_4^{3-} , Cu, Zn, Mn, Fe

Estimated parameters

Total hardness; Sodium Adsorption Rate (SAR); Residual Sodium Carbonate (RSC); Lime Deposition Potential (LDP);

SAR:
$$\frac{(Na_{l}^{meq})}{\sqrt{0.5 x \left[\left(Ca_{l}^{meq}\right) + (Mg_{l}^{meq})\right]}}$$
 [1]

RSC (meq/l): =(
$$HCO_3^{2-}$$
)+(CO_3^{2-})- (Ca^{2+}) - (Mg^{2+}) [2]

LDP (meq/l) is the lower between the two sums (a) $(HCO_3^-)+(CO_3^{2-})$, or (b) $(Ca^{2+})+(Mg^{2+})$ [3]

Wastewater vs currently used irrigation water (average values)

Parameter	Drillings and wells	Wastewater
рН	7.14	5.68
EC, mS/cm	6.08	6.10
Polyphenols, mg/l	-	1,500
Na, mg/l	897	347
K, mg/l	27.3	1,050
Total hardness, ppm CaCO ₃	1984	1,820
HCO ₃ , meq/l	5.79	1.10
CO ₃ ²⁻ , meq/l	0.10	-
Cl ⁻ , mg/l	2,122	710
NO ₃ , mg/l	53.1	5.0
LDP, meq/l	5.81	1.10
SAR	8.28	3.5
RSC, meq/l	-34	-35
Risk for soil permeability	Low	Low

Currently used irrigation water

Mean values and the respective evaluation for irrigation water parameters measured between 2013 and 2014 in Aegina island.

Parameter	Mean value	Evaluation
рН	7.14	Within normal range
Electrical	6.08	High hazard. The water is unacceptable for
Conductivity, dS/m		irrigation, except for very salt-tolerant plants
		where there is excellent drainage, frequent
		leaching an intensive management. The risk for soil
		salinity is very high.
Total hardness,	1,979	Unacceptable high hardness
ppm CaCO ₃		
HCO ₃ ²⁻ , meq/l	4.7	Slight to moderate restriction on use
Cl ⁻ , mg/l	2,118	Chlorides concentration is very high and can cause
		severe damages to plants
N-NO ₃ , mg/l	12	Slight to moderate restriction on use
SAR	8.8	Low risk for sodium hazard
RSC, meq/l	-34	The residual sodium carbonate is low. No calcium
		deposition and infiltration decrease problems are
		anticipated
LDP, meq/l	4.7	Very high risk for lime deposition on leaves, fruits
		and trees roots.

Pistachio wastewater

Mean values and the respective evaluation pistachios wastewater parameters measured between 2013 and 2014 in Aegina island.

Parameter	Mean value	Evaluation
рН	5.68	Very low, out of the normal range
Electrical	6.10	High hazard. The water is unacceptable for
Conductivity, dS/m		irrigation, except for very salt-tolerant plants
		where there is excellent drainage, frequent
		leaching an intensive management. The risk for soil
		salinity is very high.
Total hardness,	1,820	Unacceptable high hardness
ppm CaCO ₃		
HCO ₃ ²⁻ , mg/l	1.1	None restriction on use
Cl ⁻ , mg/l	710	Chlorides concentration is very high and can cause
		severe damages to plants
N-NO ₃ , mg/l	1.1	None restriction on use
SAR	3.5	Low risk for sodium hazard
RSC, meq/l	-35	The residual sodium carbonate is low. No calcium
		deposition and infiltration decrease problems are
		anticipated
LDP, meq/l	1.1	No risk for lime deposition on leaves, fruits and
		trees roots

...about soil

...about soil

...about soil

AgroStrat proposed...

Strategy depends upon the ability to foresee future consequences of present initiatives

Thank you for your attention

Dr. Maria K. Doula

Benaki Phytopathological Institute Greece

